Kinetic Study, Modeling and Simulation of Homogeneous Rhodium-Catalyzed Methanol arbonylation to Acetic Acid

Document Type: Research Article


1 Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

2 Petrochemical Research & Technology Company (NPC-RT), Tehran, I.R. IRAN


Thermodynamic restrictions and simultaneous effects of operational conditions on the homogeneous rhodium-catalyzed carbonylation of methanol are studied in this line of research. It is shown that the general NRTL-Virial model can be appropriated to study thermodynamics of the carbonylation. It is obtained that the reaction is kinetically and thermodynamically reasonable at temperatures above 420K and below 520K, respectively. Moreover, at carbon monoxide partial pressures above 10 bar, the reaction rate is independent of the partial pressure. These results are in full accord with those reported in the literature. In addition, PCO > 2 bar is necessary for initializing the reaction. The parameters involved in the rate expression, equilibrium constants, CO solubility, and rate constant, are determined. The equilibrium constants are calculated with B3LYP/SDD ab initio method, and the value of Henry’s coefficient for CO (HCO) is determined as a function of temperature and methyl acetate conversion. The results predicted by this function agree well with those proposed by the general NRTL-Virial model with the errors below 11%. The Variation of CO solubility with acetic acid and methyl acetate concentrations is in good agreement with that obtained by others. It is found that the determined parameters give satisfactory predictions in modeling and simulation of the reaction.


Main Subjects

[1] Von Kutepow N., Himmle W.,  Hohenschutz H., Die Synthese Von Essigsäure Aus Methanol und Kohlenoxyd, Chemie Ingenieur Technik, 37 (4), p. 383 (1965).
[2] Paulik F.E., Roth J.F., Novel Catalysts for the Low-Pressure Carbonylation of Methanol to Acetic Acid, Chem. Commun, 1578a (1968).
[3] Roth J.F., Craddock J.H., Hershman A., Paulik F.E., Low Pressure Process for Acetic Acid Via Carbonylation, Chem. Techn, 1, p. 600 (1971).
[4] Murphy M.A., Smith B.L., Torrence G.P., Aguilo A., Iodide and Acetate Promotion of Carbonylation of Methanol to Acetic Acid: Model and Catalytic Studies, J. Organomet. Chem, 303, p. 257 (1986).
[6] Qian Q., Li F., Yuan G., Promoting Effect of Phosphates Upon Homogeneous Methanol Carbonylation, Catal. Commun, 6, p. 446 (2005).
[7] Zhang S., Qian Q., Yuan G., Promoting Effect of Transition Metal Salts on Rhodium Catalyzed Methanol Carbonylation, Catal. Commun, 7, p. 885 (2006).
[8] Qian Q., Zhang S., Yuan G., Promoting Effect of Oxometallic Acids, Heteropoly Acids of Mo, W and Their Salts on Rhodium Catalyzed Methanol Carbonylation, Catal. Commun, 8, p. 483 (2007).
[9] Maitlis P.M., Haynes A., Sunley G.J., Howard M.J., Methanol Carbonylation Revisited: Thirty Years on, J. Chem. Soc, Dalton Trans, 11, p. 2187 (1996).
[10] Dake S.B., Jaganathan R., Chaudhari R.V., New Trends in the Rate Behavior of Rhodium-Catalyzed Carbonylation of Methanol, J. Ind. Eng. Chem. Res, 28, 1107 (1989).
[11] Nowicki L., Ledakowicz S., Zarzycki R., Kinetics of Rhodium-Catalyzed Methanol Carbonylation, Ind. Eng. Chem. Res, 31, 2472 (1992).
[12] Kim J.S., Ro K.S., Woo S.I., Computer Simulation of Reaction Rate Expression for Methanol Carbonylation Reaction Catalyzed Over RhC13-3H2O/HI, J. Mol. Catal, 69, 15 (1991).
[13] Forster D.J., On the Mechanism of a Rhodium-Complex-Catalyzed Carbonylation of Methanol to Acetic acid, J. Am. Chem. Soc, 98, 846 (1976).
[14] Forster D.J., Mechanistic Pathways in the Catalytic Carbonylation of Methanol by Rhodium and Iridium Complexes, Adv. Organomet. Chem, 17, 255 (1979).
[15] Jones J.H., The CativaTM Process for the Manufacture of Acetic acid, Platinum metals Rev, 44 (3), 94 (2000).
[16] Tonde S.S., "Carbonylation of Alcohols and Olefins Using Soluble Transition Metal Catalysts", Ph.D. Dissertation, Homogeneous Catalysis Division National Chemical Laboratory, University of Pune, Pune, (2004) [Online]. Available: http://dspace.ncl.
[17] Hjortkjaer J., Jensen V.W., Rhodium Complex Catalyzed Methanol Carbonylation, Ind. Eng. Chem. Prod. Res. Dev, 15 (1), p. 46 (1976).
[18] Kelkar A.A., Ubale R.S., Deshpande R.M., Chaudhari R.V., Carbonylation of Methanol Using Nickel Complex Catalyst: a Kinetic Study, J. Cata, 156, p. 290 (1995).
[19] HYSYS 3.2 simulation basis, Hyprotech Ltd., Calgary, Canada, (2003) [Online]. Available:
[20] James J.L.M., Jeffrey C.F.C., Acetic Acid by Low Pressure Carbonylation of Methanol, PEP Review 78-3-4. (1980) [Online abstract]. Available:
[21] Smith B.L., Torrence G.P., Aguilo A., Alder J.S., Methanol Carbonylation Process, U.S. Patent 5,026,908, (1991).
[22] Smith, B.L., Torrence, G.P., Aguilo, A., Alder, J.S., Methanol Carbonylation Process, U.S. Patent 5,001,259, (1991).
[23] Smith B.L., Torrence G.P., Aguilo A., Alder J.S., Methanol Carbonylation Process, U.S. Patent 5,144,068, (1992).
[24] Trueba D.A., Kulkarni S., Control Method for Process of Removing Permanganate Reducing Compounds from Methanol Carbonylation Process, U.S. Patent 7,271,293, (2007).
[25] Dake S.B., Chaudhari R.V., Solubility of CO in Aqueous Mixtures of Methanol, Acetic Acid, Ethanol, and Propionic acid, J. Chem. Eng. Data, 30, p. 400 (1985).
[26] Garland M., Transport Effects in Homogeneous Catalysis, In "Encyclopedia of Catalysis",Horvath I.T., Ed.; Wiley: Eötvös university, Budapest, Hungary, Vol. 3, pp. 480-490 (2003).
[27] Ming L., Wenlin F., Maorong H., Yongqiang J., Zhenfeng X., Ab initio study on the Mechanism of Rhodium-Complex Catalyzed Carbonylation of Methanol to Acetic acid, Sci China Ser B-Chem, 44 (5), p. 465 (2001).
[28] Kinnunen T., Laasonen K., DFT-Studies of Cis- and Trans-[Rh(CO)2X2]+ (X=/PH3, PF3, PCl3, PBr3, PI3 or P(CH3)3) and Oxidative Addition of CH3I to Them, J. Organomet. Chem, 665, p. 150 (2003).
[29] Ivanova E.A., Nasluzov V.A., Rubaylo A.I., Rösch N., Theoretical Investigation of the Mechanism of Methanol Carbonylation Catalyzed by Dicarbonyldiiodorhodium Complex, Chemistry for Sustainable Development, 11, p. 101 (2003).
[30] Maorong H., Wenlin F., Yongqiang J., Ming L., IRC Analysis of Methanol Carbonylation Reaction Catalyzed by Rhodium Complex, Sci China Ser B-Chem, 47 (1), p. 41 (2004).
[31] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B, 37, p. 785 (1988).
[32] Becke A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, Chem. Phys, 98 (7), p. 5648 (1993).
[34] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria M.A., Robb M.A., Zakrzewski V.G., Montgomery J.A., Stratman R.E., Burant J.C., Daprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayal P.Y., Ciu Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Oritz J.V., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T.A., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzales C.A., Challacombe M., Gill P.M.W., Johnson B.G., Chen W., Wong M.W., Andres J.L., Head-Gordon M., Replogle E.S., Pople J.A., Gaussian 98, Revision A.7, Gaussian, Inc.: Pittsburgh, PA (1995).
[35] Forster D., Advances in Organometallic Chemistry, In: "Catalysis and Organic Syntheses", Stone F.G.A., West R., Eds.; Academic Press: New York, San Francisco, London, Vol. 17, pp. 262 (1979).