Preparation of Different WO3 Nanostructures and Comparison of Their Ability for Congo Red Photo Degradation

Document Type: Research Article


1 Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998 Tehran, I.R. IRAN

2 Department of Chemistry, Faculty of Science, Tarbiat Modares University (TMU), P.O. Box 14115-336 Tehran, I.R. IRAN


Tungsten trioxide nanoparticles with monoclinic structure and average particle size about 80 nm were prepared by the spray pyrolysis method. WO3 nanorods with hexagonal structure and average dimension about 15 × 100 nm were synthesized in gram quantities by modified hydrothermal method at lower temperature and shorter reaction time in comparison to the previous research. Photo degradation of Congo Red showed that the as-prepared WO3 nanoparticles is more effective than nanorod structure. WO3 nanorods actually had no effect in Congo Red photo degradation. Therefore in this reaction, spherical morphology is superior to column morphology. The samples were characterized with X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), EDX analysis, UV-visible spectrum and Transmission Electron Microscopy (TEM).


Main Subjects

[1] Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., Environmental Applications of Semiconductor, Chem. Rev., 95, p. 69 (1995).
[2] Machado A.E.H., Gomes A.J., Campos C.M.F. et al., Photoreactivity of Lignin Model Compounds in the Photobleaching of Chemical Publps 2. Study of the Degradation of 4-Hydroxy-3-Methoxy-Benzadehyde and Two Lignin Fragments Induced by Singlet Oxygen, J. Photochem. Photobiol. A, 110, p. 99 (1997).
[3] Hagfeldt A., Graetzel M., Light-Induced Redoxy Reactions in Nanocrystalline Systems, Chem. Rev., 95, p. 49 (1995).
[4] Schiavello M., Some Working Principles of Heterogeneous Photocatalysis by Semiconductors, Electrochim. Acta., 38, p. 11 (1993).
[5] Hidaka H., Zhao J., Pelizzetti E., Serpone N., Photodegradation of Surfactants. Comparison of Photocatalytic Processes Between Anionic DBS and Cationic BDDAC on the Titania Surface, J. Phys. Chem., 96, p. 2226 (1992).
[6] Matthews R.W., Photocatalytic Oxidation oand Adsorption of Methylene Blue, J. Chem. Soc., Faraday Trans., 185, p. 1291 (1989).
[7] Lakshmi S., Renganathan R., Fujita S., Study on TiO2-Mediated Photocatalytic Degradation of Methylene Blue, J. Photochem. Photobiol. A, 88, p. 163 (1995).
[8] Singhal B., Porwal A., Sharma A., Ameta R., Ameta S.C.,Photocatalytic Degradation of Cetylpyridinium Chloride Over Titanium Dioxide Powder, J. Photochem. Photobiol. A, 108, 85 (1997).
[9] Serpone N., Maruthamuthu P., Pichat P., Pelizzetti E., Hidaka H., Exploiting the Interparticle Electron Transfer Process in the PhotocatalysedOxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer Between Coupled Semicondutors, J. Photochem. Photobiol. A, 85, p. 247 (1995).
[10] Vallejos S., Khatko V., Calderer J., Gracia I., Cane C., Llobet E., Correig X., Micro-Machined WO3-Based Sensors Selective to Oxidizing Gases, Sens. Actuators B, 132, p. 209 (2008).
[11] Mitsugi F., Hiraiwa E., Ikegami T., Ebihara K., Pulsed Laser Deposited WO3 Thin Films for Gas Sensor, Surf. Coat. Technol., 169-170, p. 553 (2003).
[12] He X., Li J., Gao X., Wang L., NO2 Sensing Characteristics of WO3 Thin Film Microgas Sensor Sens. Actuators B, 93, p. 463 (2003).
[13] Ashirt P.V., Bader G., Truong V., Electrochromic Properties of Nanocrystalline Tungsten Oxide Thin Films, Thin Solid Films, 320, p. 324 (1998).
[14] Xu Z., Vetelino J.F., Lec R., Parker D.C., J. Vac. Sci. Technol. A, 8, p. 3634 (1990).
[15] Tagtstrom P., Jansson U., Chemical Vapour Deposition of Epitaxial WO3 Films, Thin Solid Films, 352, p. 107 (1999).
[16] Haro-Poniaowski E., Jouanne M., Morhange J.F., Micro-Raman Characterization of WO3 and MoO3 Thin Films Obtained by Pulsed Laser Irradiation, Appl. Surf. Sci., 127-129, p. 674 (1998).
[17] Lee S.H., Cheong H.M., Edwin C., Pitts J.R., Deb S.K., Alternating Current Impedance and Raman Spectroscopic Study on Electrochromic a-WO3 Films, Appl. Phys. Lett., 76, p. 3908 (2000).
[18] Lee D.S., Nam K.H., Lee D.D., Effect of Substrate on NO2-Sensing Properties of WO3 Thin Films Gas Sensors, Thin Solid Films, 375, p. 142 (2000).
[19] Cantalini C., Sun H.T., Faccio M. et al., NO2 Sensitivity of WO3 Tin Films Obtained by High Vacuum Thermal Evaporation, Sens. Actuators B, 31, p. 81 (1996).
[20] Cantalini C., Pelino M., Sun H.T. et al., Cross Sensitivity and Stability of NO2 Sensors from WO3 Thin Film, Sens. Actuators B, 35-36, p. 112 (1996).
[21] Moulzolf S.C., Ding S.An., Lad R.J., Stoichiometry and Mictrostucture Effects on Tungsten Oxide Chemiresistive Films, Sens. Actuators B, 77, p. 375 (2001).
[22] Kim T.S., Kim Y.B., Yoo K.S., Sung G.S., Jung H.J., Sensing Characteristics of dc Reactive Sputtered WO3 Thin Films as an NOx Gas Sensor, Sens. Actuators B, 62, p. 102 (2000).
[23] Penza M., Tagliente M.A., Mirenghi L., Gerardi C., Martucci C., Cassano G., Tungsten Troixide (WO3) Sputtered Thin Films for a NOx Gas sensor, Sens. Actuators, 50, p. 9 (1998).
[24] Tagtstorm P., Jansson U., Chemical Vapour Deposition of Epitaxial WO3 Films, Thin Solid Films, 352, p. 107 (1999).
[25] Vijayalakshmi J., Jayachandran M., Sanjeeviraja C., Structural, Electrochromic and FT-IR Studies on Electrodeposite Tungsten Trioxide Films, Curr. Appl. Phys., 3, p. 171 (2003).
[26] Cantalini C., Wlodarski W., Li Y., Passacantando M., Santucci S., Comini E., Faglia G., Sberveglieri G., Investigation on the O3 Sensitivity Properties of WO3 Thin Films Prepared by Sol-Gel, Thermal Evaporation and r.f. Sputtering Techniques, Sens. Actuators B, 64, p. 182 (2000).
[27] Therese H.A., LI J., Kolb U., Tremel W., Facile Large Scale Synthesis of WS2 Nanotubes from WO3 Nanorods Prepared by a Hydrothermal Route, Solid State Sci., 7, p. 67 (2005).
[28] Alaei M., Rashidi A.M., Mahjoub A., Two Suitable Method for the Preparation of Inorganic Fullerene-Like (IF) WS2 Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), 50, p. 91 (2009).
[29] Mpou7retedal H.R., Keshavarz M.H., Yosefi M.H., Shokrollahi A., Zali A., Photodegradation of HMX and RDX in the presence of Nanocatalyst of Zinc Sulfide Doped with Copper, Iran. J. Chem. Chem. Eng. (IJCCE), 53, p. 13 (2009).