Study of a Fibrous Annual Plant, Luffa Cylindrica for Paper Application Part I: Characterization of the Vegetal

Document Type: Research Article


1 Chlef University, Hay Es-Salem 02000, ALGERIA

2 Medea University, LBMPT 26000, ALGERIA

3 LGP2, EFPG, DU, 461, Rue de la Papeterie, BP 65, 38402 Saint Martin d'Hères Cedex, FRANCE


This study is devoted to the morphological, chemical and physical characterization of raw material of the fruit of Luffa Cylindrica. By microscopic analysis, it can be observed that the fruit is composed of an assembly of dependent cords, where four parts are differentiated: external, internal wall, core and bond. Each cord consists of hollow and flexible cylindrical fibers.The external part is richest in cellulose (80%). The mean contents cellulose of the various parts appears higher than those of wood fibers, and the lower percentages lignin (10%). The crystallinity index of cords cellulose was characterized by x-rays diffractometry; the measured value (69%).The thermophysical analysis showes that various kinetic phases of the adsorbed water drainage process and heat capacities measured being close to those of wood celluloses.


Main Subjects

1] Mazali I.O., Alves O.L., Morphosynthesis, High Fidelity Inorganic Replica of the Fibrous Network of Loofah Sponge (Luffa Cylindrica), Anais da Academia Brasilia de Ciencias, 77(1), p. 25 (2005).

[2] Dairo F.A.S, Aye P.A., Oluwasola T.A., Some Functional Properties of Loofah Gourd Seed, J. of Food, Agric. & Envir., 5(1), p. 97 (2007).

[3] Akhtar N., Iqbal J., Iqbal M., Removal and Recovery of Nickel (II) from Aqueous Solution by Loofa Sponge Immobilized Biomass of Chlorella Sorokiniana: Characterization Studies, J. of Hazardous Mat, 108 (1-2), p. 85 (2004).

[4] Akhtar N., Iqbal J., Iqbal M., Enhancement of Lead (II) Biosorption by Microalgal Biomass Immobilized onto Loofa (Luffa Cylindrica) Sponge, Eng. in Life Sci., 4(2), p. 171 (2004).

[5] Bal K.E., Bal Y., Lallam A., Gross Morphology and Absorption Capacity of Cell-Fibers from the Fibrous Vascular System of Loofa Sponge, Textile Res. J., 74(3), p. 241 (2004).

[6] Iqbal M., Edyvean R.G.J., Alginate Coated Loofa Sponge Discs for the Removal of Cadmium from Aqueous Solutions, Biotechnology Letters, 26(2), p. 165 (2004).

[7] Demir H, Top A, Balköse D., Ülkü S., Dye Adsorption Behaviour of Luffa Cylindrica Fibers, J. of Hazardous Materials, 153(1-2), p. 389 (2008).

[8] Hideno A., James C. Ogbonna, Hideki A., Hideo Tanaka, Acetylation of Loofah (Luffa Cylindrica) Sponge as Immobilization Carrier for Bioprocesses Involving Cellulose, J. of Bioscience and Bioengineering, 103(4), (2007).

[9] Chen J.P., Lin T.C., Loofa Sponge as a Scaffold for Culture of Rat Hepatocytes, Biotechnology Progress, 21(1), p. 315 (2005).

[10] Roble N.D., Ogbonna J.C., Tanaka H., L-Lactic Acid Production from Raw Cassava Starch in A Circulating Loop Bioreactor with Cells Immobilized in Loofa (Luffa Cylindrica), Biotechnology Letters, 25(13), p. 1093 (2003).

[11] Roble N.D., Ogbonna J.C., Tanaka H., A Novel Circulating LoopBioreactor with Cells Immobilized in Loofah (Luffa CYlindrica) Sponge for the Bioconversion of Raw Cassava (2003).

[12] Hoarau F., "DEA de Chimie Moléculaire, Caractérisation Structural et Morphologique de la Luffa Cylindrica", Université Joseph Fourier (1995).

[13] Camacho G., Piergiovanni L., A Food as Protective Packaging, Rass. Dell’imballaggio, 17 (13) (1996).

[14] Tonobe V.O.A., Thais H.D.S, Mailda M., Sandro C.A.A., Cmoprehensive Characterization of Chemically Treated Brazilian Sponge-Gourd, Poly. Test, 24(4), p. 474 (2005).

[15] Ghali L., Msahli S., Zidi M., Sakli F., Effect of Pre-Treatment of Luffa Fibres on the Structural Properties, Mat. Letters, 63(1), p. 61 (2009).

[16] Dorkel N., Amélioration de la Résistance des Produits Cellulosiques à L’oxydation par Les Solutions D’Hypochlorite", PhD. Thèses, INPG (1993).

[17] Newman R.H., Hemmingson J.A., Determination of the Degree of Cellulose Crystallinity in Wood by Carbon-13 Nuclear Magnetic Resonance Spectroscopy, Holzforschung, 44(5), p. 351 (1990).

[18] Hatakeyama T., Hatakeyama H., "Differential Scanning Calorimetric Studies on Cellulose and Lignin", Research Institute for Polymers and Textiles and Industrial Products Research Institute, 1-4, Yatabe-Higashi, Tsukuba, Ibaraki 305, (1981).

[19] Mortha G., "Contribution à L’étude du Blanchiment des Pâtes Cellulosiques par le Dioxyde de Chlore Dans un Réacteur Agité à Alimentation Progressive", PhD. Thèses NPG (1989).

[20] Zampleri A., Godwin T.P.M, Thangaraj S., Wilhelm S., Alessandro R., Ralph H., Heino S., Greil P., Biotemplating of Luffa Cylindrica Sponges to Self-Supporting Hierarchical Zeolite Macrostructures for Bio-Inspired Structured Catalytic Reactors, Mat. Sci. and Eng., 26(1), p. 130 (2005).

[21] Nasreen A., Asma S., Muhammed I., Chlorella Sorokiniana Immobilized on the Biomatrix of Vegetable Sponge of Luffa Cylindrica: a New System to Remove Cadmium from Contaminated Aqueous Medium, Bioresource Tech., 88(2), p. 163 (2003).

[22] Mazmanci M. Ali, Ünyayar A., Decolourisation of Reactive Black 5 by Funalia Trogii Immobilised on Luffa Cylindrica Sponge, Process Biochemistry, 40(1), p. 337 (2005).

[23] Vignoli J.A., Celligoi M.A.P.C., Silva R.S.F., Development of a Statistical Model for Sorbitol Production by Free and Immobilized Zymomonas Mobilis in Loofa Sponge Luffa Cylindrical, Process Biochemistry, 41(1), p. 240 (2006).

[24] Festus A., Performance and Haematological Evaluation of Weaner Rabbits Feb Loofah Gourd Seed Meal, African J. of Food Agric, Nutrition and Development (2008).

[25] Parkash A., Ng T.B., Tso W.W., Isolation and Characterization of Luffa Cylindrica, a Ribosome Inactivating Peptide with Anti-Fungal Activity from Sponge Gourd (Luffa Cylindrica) Seeds, Peptides, 23(6), p. 1019 (2002).

[26] Anamika K., Amit G., Saraswati G., Basanti P., Immunomodulatory Effects of Two Sapogenins 1 and 2 Isolated from Luffa Cylindrica in Balb/C Mice, Bioorganic & Medicinal Chemistry Letters, 17(6), p. 1608 (2007).

[27] Iqbal M., Edyvean R.G.J., Loofa Sponge Immobilized Fungal Biosorbent: A Robust System for Cadmium and Other Dissolved Metal Removal from Aqueous Solution, Chemosphere, 61(4), p. 510 (2005).

[28] Atchison J.E., Non-Wood Fiber Could Play a Major Role in Future U.S. Papermaking Furnishes, Pulp and Paper, 69(7), pp. 125-128 and 130-131 (1995).

[29] Misra D.K., "Cereal Straw, Pulp and Paper Manufacture", 3rd ed, vol 3, Secondary Fibers and Non-Wood Pulping, pp. 82-93 (1987).

[30] Hon D.N.S., Nubuoshiraishi, "Nubuoshiraishi, Wood and Celluloses Chemistry", Marcel Dekker, Inc. New York and Basel (1991)..

[31] Lasseran J.C., Chauffage, Séchage et Déshydratation, Perspectives Agricoles, 39, p. 52 (1980).

[32] Paschino F., Merella G., Produzioni Agricole Per Uso Non Alimentare in Ambiante Mediterraneo: Il Caso Della Luffa Cylindrica, Medt., 3 (1994).

[33] Schott S., "Valorisation de la Pâte de Paille de Blé, Obtenue Par le Procédé D’explosion en Phase Vapeur, Pour une Application en Papeterie- Modélisation de la Résistance à la Compression du Papier, PhD. Theses, INPG (2000).

[34] Alcaide L.J., Parra I.S., Baldovin F., Characterization of Spanish Agricultural Residues with a View to Obtaining Cellulose Pulp, Tappi J., 73(8), p. 173 (1990).

[35] Yilmaz Y., Line Soda Oxygen (LSO) Pulping of Wheat Straw-Part 2: Effects of Cooking Parameters on Paper Properties, Paperi ja Puu, 77(8), p. 498 (1995).

[36] Aitken Y., Cadel F.,Voillot C., "Constitutants Fibreux Des Pâtes Papiers et Cartons, Pratique de l'analyse, Centre Technique de I'Industries Des Papiers Cartons et Celluloses", 1ère éd EFPG, Grenoble (1988).

[37] Silvy J., Romatier G., Chiodi R., Méthodes Pratiques de Contrôle du Raffinage, Revue ATIP, 22(1), p. 31 (1968).

[38] Hanini S., Mortha G., Bouaziz M.N., Etud de la Luffa Cylindrica, Partie II: Elaboration de Pâte et Caractérisation Papetières, Soumis à la Revue ATTP, (2005).