Using A Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres

Document Type: Research Article

Authors

1 Nonwoven Department, Textile Engineering Faculty, Technical University of Liberec, Studentska 2, 46117, Liberec, Czech Republic

2 Textile Engineering Department, Engineering & Architecture Faculty, Kahramanmaras Sütçü Imam University, Avşar Campus, 46100, Kahramanmaraş, TURKEY

Abstract

Morphological changes in Polyvinyl Butyral (PVB) electrospun nanofibres can be acquired by preparation of PVB spinning solution in different solvents.  Accordingly, three solvents, including ethyl alcohol, n-butanol and isopropanol, with diverse physical properties (e.g. boiling point, density, dipole moment and dielectric constant) were used to prepare PolyVinyl Butyral (PVB) spinning solution. The PVB polymer was used in two ranges of molecular weight. Scanning Electron Microscopy (SEM) was employed to determine the morphological aspects. Results demonstrated a very high increase in the nanofibre diameter, with decreasing dipole moment and increasing boiling point and density of solvents. The smallest nanofibre diameter and bead structure was revealed for the PVB solution prepared by n-butanol. With regard to morphological aspects, isopropnol was selected as the most suitable solvent for a range of PVB molecular weights

Keywords

Main Subjects


[1] Zhang Y., Xiao C., An S., Yang J., A Morphological Study of Mullite Long Fiber Prepared Using Polyvinyl Butyral as Spinning Aids, J. Sol-Gel. Sci. Technol., 57, p. 142 (2011).

[2] Imaizumi S., Matsumoto H., Suzuki K., Minagawa M., Kimura M., Tanioka A., Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(Vinyl Butyral) and Electrolytes, Polym. J., 41, p. 1124 (2009).

[3] Lubasova D., Martinova L., Controlled Morphology of Porous Polyvinyl Butyral Nanofibers, J. Nanomater., 2011, ID 292516, (2011).

[4] Chen L., Liao J., Lin S., Chuang Y., Fu Y., Synthesis and Characterization of PVB/Silica Nanofibers by Electrospinning Process, Polymer, 50, p. 3516 (2009).

[5] Qiu Y., Yu, J. Rafique, J. Yin J., Bai X., Wang E., Large-Scale Production of Aligned Long Boron Nitride Nanofibers by Multijet/ Multicollector Electrospinning, J. Phys. Chem., 113, p. 11228 (2009).

[6] Berutti F.A., Alves A.K., Bergmann C.P., Clemens F.J., Graule T., Synthesis of CeO2 and Y2O3-Doped CeO2 Composite Fibers by Electrospinning, Particul. Sci. Technol., 27, p. 203 (2009).

[7] Li H., Ke Y., Hu Y., Polymer Nanofibers Prepared By Template Melt Extrusion, J. Appl. Polym. Sci., China, 99(3), p. 1018 (2006).

[8] Ikegame M., Tajima K., Aida T., Template Synthesis of Polypyrrole Nanofibers Insulated Within One-Dimensional Silicate Channels: Hexagonal Versus Lamellar For Recombination of Polarons into Bipolarons, Angew. Chem. Int. Edit., 42(19), p. 2154 (2003).

[9] Yang Z., Xu B., Supramolecular Hydrogels Based on Biofunctional Nanofibers Of Self-Assembled Small Molecules, J. Mater. Chem., 17(23), p. 2385 (2007).

[10] Feng X., Yang G., Xu Q., Hou W., Zhu J., Self-Assembly Of Polyaniline/Au Composites: From Nanotubes To Nanofibers, Macromol. Rapid Comm., 27(1), p. 31 (2006).

[11] Taylor G., Disintegration of Water Drops in an Electric Field, Proc. R. Soc. Lond. A., 280, p. 383 (1964).

[12] Ma X.P., Zhang R., Synthetic Nano-Scale Fibrous Extracellular Matrix, J. Biomed. Mater. Res., 46(1), p. 60 (1999).

[13] Ellison C.J., Phatak, A. Giles, W.D. Macosko C.W., Bates F.S., Melt Blown Nanofibers: Fiber Diameter Distributions And Onset of Fibre Breakup, Polymer,. 48(20), p. 3306 (2007).

[14] Teo E.W., Ramakrishna S.A., Review on Electrospinning Design And Nanofibre Assemblies, Nanotechnology, 17(14), p. 89 (2006).

[15] Kim Y.H., Cho C.S., Kang I.K., Kim S.Y., Kwon O.H., Effect of Solvent on the Characteristics of Electrospun Regenerated Silk Fibroin Nanofibers Key Eng. Mat., 342–343, p. 813 (2007).

[16] Wannatong L., Sirivat A., Supaphol P., Effects of Solvents on Electrospun Polymeric Fibers: Preliminary Study on Polystyrene, Polym. Int., 53, p. 1851 (2004).

[17] Zuo W., Zhu M., Yang W., Yu H., Chen Y., Zhang, Y., Experimental Study on Relationship Between Jet Instability and Formation of Beaded Fibers During Electrospinning, Polym. Eng. Sci., 45(5), p. 703 (2005).

[18] Liu J., Kumar S., Microscopic Polymer Cups by Electrospinning, Polymer, 46(10), p. 3211 (2005).

[19] Jarusuwannapoom T., Hongroijanawiwat W., Jitjaicham S., Wannatong L., Nithitanakul M., Pattamaprom C., Koombhongse P., Rangkupan R., Supaphol P., Effect of Solvents on Electro-Spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers, Eur. Polym. J., 41, p. 409 (2005).

[20] Megelski S., Stephens J.S., Chase D.B., Rabolt J.F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers, Macromolecules, 35, p. 8456 (2002).

[21] Cengiz, F. Dao, T.A. Jirsak O., Influence of Solution Properties on the Roller Electrospinning of Poly(vinyl alcohol), Polym. Eng. Sci., 50, p. 936 (2010).

[23] Shenoy S.L, Bates W.D., Frisch H.L., Wnek G.E., Role Of Chain Entanglements On Fiber Formation During Electrospinning Of Polymer Solutions: Good Solvent, Non- Specific Polymer-Polymer Interaction Limit, Polymer, 46, p. 3372 (2005).

[24] Kameoka J., Orth R., Yang Y., Czaplewski D., Mathers R., Coates G., Craighead H.G., A Scanning Tip Electrospinning Source for Deposition of Oriented Nanofibres, Nanotechnology,14, p. 1124 (2003).

[25] Baumgarten P.K., Electrostatic Spinning of Acrylic Microfibers, J. Colloid Interf. Sci., 36, p. 75 (1971).

[26] Jarusuwannapoom, T. Hongrojjanawiwat W., Jitjaicham S., Wannatong L., Nithitanakul M., Pattamaprom C., Koombhongse P., Rangkupan R., Supaphol P., Effect of Solvents on Electro-Spinnability of Polystyrene Solutions And Morphological Appearance of Resulting Electrospun Polystyrene Fibers, Euro. Polym. J., 41, p. 409 (2005).