The Effect of Mg2+ and Mn2+ on Over-Production of Interleukin-2 in Recombinant E.coli

Document Type: Research Note

Authors

1 Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-143 Tehran, I.R. IRAN

2 Genetic Department, Faculty of Science, Tarbiat Modares University, P.O. Box 14155-143 Tehran, I.R. IRAN

Abstract

In order to increase the productivity of human interleukin-2 (IL-2) as a model protein in the recombinant E.coliBL21 (DE3), the effect of magnesium acetate and manganese acetate was studied based on full factorial design experiments magnesium acetate and manganese acetate and their interaction exhibited an increasing effect on IL-2 expression level upto 25.24%, 16.80% and 23.30%, respectively, in comparison to 10.76% for the standard M9 medium(as usual defined medium in high cell density culture). Magnesium acetate was the most effective salt.Other experiments were performed to investigate the effect of magnesium and acetate ions separately. Results revealed that M9 medium with 1.5 times of magnesium ion concentration resulted in the highest expression level.

Keywords

Main Subjects


[1] Schmidt W., Schweighoffer T., Herbst E., Maass G., Berger M., Schilcher F., Schaffner G., Brinstiel M.L., The Interleukin 2 Dosage Effect, Cancer Vaccines., 92, p. 4711 (1995).
[2] Stehilk-Tomas V., GulanZetic V., Stanzer D., Grba S., Vahcic N. Zink, Copper and Manganese  Enrichment in Yeast Saccharomyces Cerevisae, Journal of Food Technol. Biotechnol., 42(2), p. 115 (2004).
[3] Hanlon G.W., Hodges N.A., Russell A.D., The Influence of Glucose, Ammonium and Magnesium Availability on the Production of Protease and Bavitracin by Bacillus Licheniformis, Journal of General Microbiology, 128, p. 182 (1982).
[4] Bierbaum G., Giesecke U.E., Wandrey C., Analysis of Nucleotide Pools During Protease Production by Bacillus Licheniformis, Journal of Applied Microbiology and Biotechnology, 35, p. 725 (1991).
[5] Hubner U., Bock U., Schugerl K., Production of Alkaline Serine Protease Subtilisin Carlsberg by Bacillus Licheniformis on Complex Medium in a Stirred Tank Reactor, Journal of Applied Microbiology and Biotechnology, 40, p. 182 (1993).
[6] SatheesanBabu C., Dudev T., Casareno R., Cowan J.A, Carmay L.A., Combined Experimental and Theoretical Study of Divalent Metal Ion Selectivity and Function in Proteins, Journal of American Chemical Society.,125(31), p. 9318 (2003).
[7] Anderson R., Bosron W., Kennedy S., Vallee B., Role of Magnesium in Escherichia coli Alkaline Phosphatase, Journal of Biochemistry, 72(8), p. 2989 (1975).
[8] AnupamaPalukurty M., Kumar Telgana N., Sunder Reddy Bora H., NareshMulampaka S., Screening and Optimization of Metal Ions to Enhance Ethanol Production Using Statistical Experimental Designs, African Journal of Microbiology Research, 2, p. 87 (2008).
[9] Calik P., Bilir E., Ozcelik I.S., Calik G., Ozdamar T.H., Inorganic Compounds have Dual Effect on Recombinant Protein Production: Influence of Anions and Cations on Serine Alkaline Protease Production, Journal of Applied Microbiology, 96, p. 194 (2004).
[10] Nigel Godson G., Schoenich J., Sun W., Arkady A., Identification of the Magnesium Ion Binding Site in the Catalytic Center of Escherichiacoli Primase     by Iron Cleavage, Journal of Biochemistry, 39(2), p. 332 (2000).
[11] Ando T., Tanaka T., Kikuchi Y., Substrate Shape Specificity of E. coliRNase P Ribozyme Is Dependent on the Concentration of Magnesium Ion. Journal of Biochemistry, 133(4), p. 445 (2003).
[12] Eitman, M and Altman, E. Overcoming Acetate in Escherichia coli Recombinant Protein Fermentations. Journal of Trends in Biotechnology, 24(11), p. 530(2006).
[13] Johnston W.A., Stewart M., Lee P., Cooney M.J., Tracking the Acetate Threshold Using DO-Transient Control During Medium and High Cell Density Cultivation of Recombinant Escherichia coli in Complex Media, Journal of Biotechnol. Bioeng., 84(3), p. 314 (2003).
[14] Jesus Guardia M., Garcia Calva E., Modeling of Eschrichia coli Growth and Acetate Formation under Different Operational Conditions, Journal of Enzyme and Microbial Technology, 29, p. 449 (2001).
[15] Alberts B., "Molecular Biology of the Cell”, 5th ed, New York: Garland Science, (2008).
[16] Brown T.A., "Gene Cloning and DNA Analysis”.Mnchester: Blackwell Science, (2001).
[17] Ling H., ”Physiology of Escherichia Coli in Batch and Fed-Batch Cultures with Special Emphasis on Amino Acid and Glucose Metabolism”, Royal Institute of Technology, ISBN 91-7283-276-2, Stockholm, Sweden. (2002).
[18] Akashi H., Gojobori T., Metabolic Efficiency and Amino Acid Composition in the Proteomes of Escherichia Coli and Bacillus subtilis. PNAS, 99(6), p. 3695 (2002).
[19] YeganeSarkandy S., Farnoud A.M., Shojaosadati S.A., Khalilzadeh R., Sadeghizadeh M., Ranjbar B., Babaeipour V., Overproduction of Human Interleukin-2 in Recombinant Escherichia coli BL21 High-Cell-Density Culture by Thedetermination and Optimization of Essential Amino Acidsusing a Simple Stoichiometric Model, Journal of Biotechnol.and Appl.Biochem., 54, p. 31 (2009).
[20] Esfandiar S., Hashemi-Najafabadi S., Shojaosadati S.A., Sarrafzadeh S.A., Pourpak Z., Purification and Refolding of E.coli-Expressed Recombinant Human Interleukin-2, Journal of Biotechnol. and Appl. Biochem, 55(4), p. 209 (2010).
[21] Babaeipour V., Shojaosadati S.A., Robatjazi S.M., Khalilzadeh R., Maghsoudi N., Over-Production of Human Interferon-γ by HCDC of Recombinant Escherichia coli.Journalof Process Biochem, 42, p. 112 (2007).
[22] Khalilzadeh R., Shojaosadati S.A., Bahrami A., Maghsoudi N., Over-Expression of Recombinant Human Interferon-Gamma in High Cell Density Fermentation of Escherichia coli. Journal of Biotechnology Letters, 25, p. 1989 (2003).
[23] Khalilzadeh R., Shojaosadati S.A., Maghsoudi N., Mohammadian Mosaabadi J., Mohammadi MR., Bahrami A., Maleksabet N., NassiriKhalilli MA., Ebrahimi M., Naderimanesh H., Process Development for Production of Recombinant Human Interferon-Gamma Expressed in Escherichia coli. Journal of Ind. Microbiol. Biotechnol, 31, p. 63 (2004).
[24] Rothen S.A., Sauer M., Sonnleitner B., Witholt B., Biotransformation of Octane by Escherichia Coli HB101[pGEc47] on Defined Medium, Journal of Biotechnol and Bioeng, 58, p. 92 (1998).
[25] Rodriguez RL., Tait R.C., “Recombinant DNA Techniques” Anintroduction, Benjamin/Cummings Menlo Park, Calif, (1983).