Measurement and Modeling of Mean Ionic Activity Coefficient in Aqueous Solution Containing NaNO3 and Poly Ethylene Glycol

Document Type: Research Article


Chemical Engineering Department, Iran University of Science and Technology, Tehran, I.R. IRAN


Potentiometric investigation on {H2O+NaNO3+PEG1500} mixtures were made at T=308.15K, using electrochemical cells with two ion-selective electrodes, (Na+ glass) as the cation ion-selective electrode against (NO3- solvent-polymer PVC) as the anion ion-selective electrode. The mean ionic activity coefficients of NaNO3 were measured at different concentrations of  NaNO3 and PEG. Maximum concentration of electrolyte and PEG were 1 mol/kg and 0.12 mol/kg, respectively. The experimental data was modeled by utilizing the modified Pitzer equation and the activity coefficient ratio of PEG was evaluated by using Maxwell’s cross differential relation. 


Main Subjects

[1] Salabat A., Nasirzade K., Measurement and Prediction of Water Activity in PEG+(NH4)2SO4+H2O Systems Using Polymer Scaling Laws, J. Mol. Liq., 103, p. 349 (2003).
[2] Davidson R.L., “Handbook of Water-Soluble Gums and Resins” McGraw- Hill, New York. (1980).
[3] Silva L.H.M., Coimbra J.S.R., Meirelles A.J.A., Equilibrium Phase Behavior of Poly (Ethylene Glycol) + Potassium Phosphate + Water Two-Phase Systems at Various pH and Temperatures, J. Chem. Eng. Data, 42, p. 398 (1997).
[4] Albertsson P.A., Chromatography and Partition of Cells and Cell Fragments, Nature, 177, p. 771 (1956).
[5] Albertsson P.A., "Partition of Cell Particles and Macromolecules", John Wiley, Inc. New York (1986).
[6] Perumalsamy M., Murugesan T., Prediction of Liquid-Liquid Equilibria for PEG2000-Sodium Citrate Based Aqueous Two-Phase Systems, Fluid Phase Equilib.,  244, p. 52 (2006).
[7] Huddleston J.G., Willauer H.D., Burney M.T., Tate L.J., Carruth A.D., Rogers R.D., Comparison of an Empirical and a Theoretical Linear Solvation Energy Relationship Applied to the Characterization of Solute Distribution in a Poly(Ethylene) Glycol-Salt Aqueous Biphasic System, J. Chem. Inf. Comput. Sci., 44, p. 549 (2004).
[8] Se´ R., Aznar M., Liquid-Liquid Equilibrium of the Aqueous Two-Phase Systems Water + PEG 4000 + Potassium Phosphate at Four Temperatures: Experimental Determination and Thermodynamic Modeling, J. Chem. Eng. Data, 47, p. 1401 (2002).
[9] Huddleston J.G., Willauer H.D., Rogers R.D., Phase Diagram Data for Several PEG + Salt Aqueous Biphasic Systems at 25 °C., J. Chem. Eng. Data, 48 p. 1230 (2003).
[10] Zafarani-Moattar M.T., Salabat A., Measurement and Correlation of Viscosities, Densities, and Water Activities for the System Poly(propylene glycol) + MgSO4 + H2O at 25°C, J. Solution Chem., 27,
p. 663 (1998).
[11] Khavaninzadeh A., Modarress H., Taghikhani V., Khoshkbarchi M.K., Activity Coefficients of Electrolyte and Amino Acid in the Systems (Water  +  Potassium Chloride  + dl-Valine) at T =  298.15 K and (Water  +  Sodium Chloride  + l -Valine) at T =  308.15 K.,  J. Chem. Thermodyn., 34, p. 1297 (2002).
[12] Dehghani M.R., Modarress H., Bakhshi A., Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids Using Artificial Neural Network, Fluid Phase Equilib., 244, p. 153 (2006).
[13] Dehghani M.R., Modarress H., Monirifar M., Measurement and Modeling of Mean Activity Coefficients of NaBr and Amino Acid in (Sodium Bromide+ Potassium Phosphate+ Glycine+ Water) System at T (298.15 and 308.15) K., J. Chem. Thermodyn., 38, p. 1049 (2006).
[14] Lin D.Q., Mei L.H., Zhu Z.Q., Han Z.X., An Improved Isopiestic Method for Measurement of Water Activities in Aqueous Polymer and Salt-Solutions, Fluid Phase Equilibria, 118, p. 241 (1996).
[15] Sadeghi R., Ziamajidi F., Thermodynamic Properties of Aqueous Polypropylene Oxide 400 Solutions from Isopiestic Measurements Over a Range of Temperatures, Fluid Phase Equilib., 249 p. 165 (2006).
[16] Zhang L., Lu X., Wang Y., Shi J., Determination of Activity Coefficients Using a Flow EMF Methodol. 1. HCl in Methanol - Water Mixtures at 25, 35 and 45 °C., J. Solution Chem., 22, p. 137 (1993).
[17] Dehghani M.R., Modarress H., Monirifar M., Measurement and Modeling of Mean Activity Coefficients of NaBr and Amino Acid in (Sodium Bromide + Potassium Phosphate + Glycine + Water) System at T (298.15 and 308.15) K, J. Chem. Thermodyn., 37, p. 1305 (2005).
[18] Lin D.Q., Zhu Z.Q., Mei L.H., Yang LR, Isopiestic Determination of the Water Activities of Poly(ethylene glycol) +Salt+Water Systems at 25 °C., J. Chem. Eng. Data, 41, p. 1040 (1996).
[19] Ninni L., Camargo M.S., Meirelles A.J.A, Water Activity in Poly(Ethylene Glycol) Aqueous Solutions, Thermochim. Acta, 328, p. 169 (1999).
[20] Sadeghi R., A Modified Wilson Model for the Calculation of Vapour-Liquid Equilibrium of Aqueous Polymer-salt Solutions, J. Chem. Thermodyn., 37, p. 323 (2005)
[21] Morales J.W., Galleguillos H.R., Taboada M.E., Hernández-Luis F.,  Activity Coefficients of NaCl in PEG 4000+Water Mixtures at 288.15, 298.15 and 308.15K., Fluid Phase Equilib., 281, p. 120 (2009).
[22] Hernández-Luis F., Rodríguez-Raposo R,. Galleguillos H.R., Morales JW., Activity Coefficients of KCl in PEG 4000+Water Mixtures at 288.15, 298.15 and 308.15K,  Fluid Phase Equilib., 295, p. 163 (2010).
[23] Morales J.W., Galleguillos H.R., Graber T.A., Hernández-Luis F., Activity Coefficients of LiCl in (PEG 4000 + Water) at T = (288.15, 298.15, and 308.15) K., J. Chem. Thermodyn., 42, p. 1255 (2010).
[24] Khavaninzadeh A., Modarress H., Taghikhani V., Khoshkbarchi M.K., Measurement of Activity Coefficients of Amino Acids in Aqueous Electrolyte Solutions: Experimental Data for the Systems (H2O+NaBr+Glycine) and (H2O+NaBr+l-Valine) at T=298.15 K., J. Chem. Thermodyn., 35, p. 1553 (2003).
[25] Zemaitis J.F. Jr., Clark D.M., Rafal M, Scrivner NC., “Handbook of Aqueous Electrolyte Thermodynamics” DIPPR, AIChE., New York (1986).
[26] Merida L.F., Raposo R.R., Garcia G.E.G., Esteso M.A., Modification of the Pitzer Equations for Application to Electrolyte + Polar Non-Electrolyte MixturesJ. Electroanal. Chem. 379, p. 63 (1994).
[28] Davidon W.C., "Variable Metric Method for Minimization", A.E.C. Research and Development Report, ANL-5990. (1959).
[29] Fletcher R., Powell M.J.D., A Rapidly Cconvergent Descent Method for Minimization, Comput. J., 6, p. 163 (1963).
[30] Fletcher R., “Unconstrained Optimization”, John Wiley, Inc. (1980).