Efficient and Practical Protocol for the Synthesis of Pyridopyrazines, Pyrazines and Quinoxalines Catalyzed by La(OAc)3 in Water

Document Type : Research Article


Department of Chemistry, Payame Noor University, P.O. Box 19395-3697 Tehran, I.R. IRAN


La(OAc)3 has been used as an efficient catalytic system for the synthesis of quinoxalines. This method provides several advantages over methods that are currently employed such as a simple work-up, mild reaction conditions, good to excellent yields, and a process to recover and reuse the catalyst for five cycles with consistent activity.


Main Subjects

[1] Katritzky A.R., Rees C.W., “Comprehensive Heterocyclic Chemistry”, Pergamon, Oxford (1984).
[2] (a) Sherman D., Kawakami J., He H.Y., Dhun F., Rios R., Liu H., Pan W., Xu Y.J., Hong S.P., Arbour M., Labelle M., Duncton M.A.J., Synthesis of Unsymmetrical and Regio-Defined 2,3,6-Quinoxaline and 2,3,7-Pyridopyrazine Derivatives, Tetrahedron Lett., 48, p.8943 (2007).
    (b) Shaabani A., Maleki A., A Fast and Efficient Method for the Synthesis of 1,5-Benzodiazepine Derivatives Under Solvent-Free Conditions, Iran. J. Chem. Chem. Eng., 26(4), p. 93 (2007).
[3] Lindsley C.W., Zhao Z., Leister W.H., Robinson R.G., Barnett S.F., Defeo-Jones D., Jones R.E., Hartman G.D., Huff J.R., Huber H.E., Duggan M.E., Allosteric Akt (PKB) Inhibitors: Discovery and SAR of Isozyme Selective Inhibitors, Bioorg. Med. Chem. Lett., 15, p.761 (2005).
[4] Kim Y.B., Kim Y.H., Park J.Y., Kim S.K., Synthesis and Biological Activity of New Quinoxaline Antibiotics of Echinomycin Analogues, Bioorg. Med. Chem. Lett., 14, p.541 (2004).
[5] Sarges R., Howard H.R., Browne R.G., Lebel L.A., Seymour P.A., Koe B.K., 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A Novel Class of Potent Adenosine Receptor Antagonists and Potential Rapid-Onset Antidepressants, J. Med. Chem., 38, p.2240 (1990).
[6] Hui X., Desrivot J., Bories C., Loiseau P.M., Franck X., Hocquemiller R., Figadere B., Synthesis and Antiprotozoal Activity of Some New Synthetic Substituted Quinoxalines, Bioorg. Med. Chem. Lett., 16, p.815 (2006).
[7] Loriga M., Piras S., Sanna P., Paglietti G., Quinoxaline Chemistry. Part 7. 2-[Aminobenzoates]- and 2- [Aminobenzoylglutamate]-quinoxalines as Classical Antifolate Agents. Synthesis and Evaluation of in Vitro Anticancer, Anti-HIV and Antifungal Activity, Farmaco., 52, p.157 (1997).
[8] (a) Kumar A., Kumar S., Saxena A., De A., Mozumdar S., Ni-nanoparticles: An Efficient Catalyst for the Synthesis of Quinoxalines, Catal. Commun., p.778 (2008).
    (b) Jaung J.Y., Synthesis and Halochromism of New Quinoxaline Fluorescent Dyes, Dyes and Pigments, 71, p.45 (2006).
[9] Dailey S., Feast W.J., Peace R.J., Sage I.C., Till S., Wood E.L., Synthesis and Device Characterisation of Side-Chain Polymer Electron Transport Materials for Organic Semiconductor Applications, J. Mater. Chem., 11, p.2238 (2001).
[10] Crossley M.J., Johnston L.A., Laterally-extended Porphyrin Systems Incorporating a Switchable Unit, Chem. Commun., p.1122 (2002).
[11] Kazunobu T., Ryusuke O., Tomohiro M., Molecular Design and Evaluation of Quinoxaline-Carbohydrate Hybrids as Novel and Efficient Photo-Induced GG-Selective DNA Cleaving Agents, Chem. Commun., p. 212 (2002).
[12] Sessler J.L., Maeda H., Mizuno T., Lynch V.M., Furuta H., Quinoxaline-bridged Porphyrinoids, J. Am. Chem. Soc., 124, p.13474 (2002).
[13] Sascha O., Rudiger F., Quinoxalinodehydroannulenes: A Novel Class of Carbon-rich Materials, Synlett,
p. 1509 (2004).
[14] Pan X.Q., Zou J.P., Huang Z.H., Zhang W., Ga(OTf)3-Promoted Condensation Reactions for 1,5-Benzodiazepines and 1,5-Benzothiazepines, Tetrahedron Lett., 49, p.5302 (2008).
[15] Bhosale R.S., Sarda S.R., Ardhapure S.S., Jadhav W.N., Bhusare S.R., Pawar R.P., An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature Using Molecular Iodine as the Catalyst, Tetrahedron Lett., 46, p.7183 (2005).
[16] More S.V., Sastry M.N.V., Wang C.C., Yao C.F., Molecular Iodine: A Powerful Catalyst for the Easy and Efficient Synthesis of Quinoxalines, Tetrahedron Lett., 46, p.6345 (2005).
[17] Darabi H.R., Mohandessi S., Aghapoor K., Mohsenzadeh F., A Recyclable and Highly Effective Sulfamic Acid/Meoh Catalytic System for the Synthesis of Quinoxalines at Room Temperature, Catal. Commun., 8, p.389 (2007).
[18] Huang T.K., Wang R., Shi L., Lu X.X., Montmorillonite K-10: An efficient and Reusable Catalyst for the Synthesis of Quinoxaline Derivatives in Water., Catal. Commun., 9, p. 1143 (2008).
[19] Srinivas C., Kumar C.N.S.S.P., Rao V.J., Palaniappan S., Efficient, Convenient and Reusable Polyaniline-sulfate Salt Catalyst for the Synthesis of Quinoxaline Derivatives, J. Mol. Catal. A: Chem., 265, p. 227 (2007).
[20] Heravi M.M., Bakhtiari K., Bamoharram F.F., Tehrani M.H., Wells-Dawson Type Heteropolyacid Catalyzed Synthesis of Quinoxaline Derivatives at Room Temperature, Monatsh. Chem., 138, p. 465 (2007).
[21] Hazarika P., Gogoi P., Konwar D., A Simple and Convenient Synthesis of Pyrazinones, Synth. Commun., 37, p. 3447 (2007).
[22] Heravi M.M., Bakhtiari K., Oskooie H.A., Taheri S., MnCl2-promoted Synthesis of Quinoxaline Derivatives at Room Temperature, Heteroat. Chem., 19, p. 218 (2008).
[23] Heravi M.M., Taheri S., Bakhtiari K., Oskooie H.A., On Water: A Practical and Efficient Synthesis of Quinoxaline Derivatives Catalyzed by CuSO4 5H2O, Catal. Commun., 8, p. 211 (2007).
[24] Heravi M.M., Tehrani M.H., Bakhtiari K., Oskooie H.A., Zn[(I)proline]: A Powerful Catalyst for the Very Fast Synthesis of Quinoxaline Derivatives at Room Temperature, Catal. Commun., 8, p. 1341 (2007).
[25] More S.V., Sastry M.N.V., Yao C.F., Cerium (IV) Ammonium Nitrate (CAN) as a Catalyst in Tap Water: A Simple, Proficient and Green Approach for the Synthesis of Quinoxalines, Green Chem., 8, p. 91 (2006).
[26] Antoine M., Czech M., Gerlach M., Günther E., Schuster T., Marchand P., Preparation of Novel 2,3,8-Trisubstituted Pyrido[3,4-b]Pyrazines and Pyrido[2,3-b]pyrazines, Synthesis, 5, p. 794 (2011).
[27] Aghapoor K., Darabi H.R, Mohsenzadeh F., Balavar Y., Daneshyar H., Zirconium(IV) Chloride as Versatile Catalyst for the Expeditious Synthesis of Quinoxalines and Pyrido[2,3-b]pyrazines under Ambient Conditions, Transit. Metal Chem., 35, p. 53 (2010).
[28] Duarte F.F., Popp F.D., Reissert Compound Studies. LXVII. The Pyrido[3,4-b]pyrazine Reissert Compound, J. Heterocylic Chem., 31, p.819 (1994).
[29] Cai J.J., Zou J.P., Pan X.Q., Zhang W., Gallium(III) Triflate-catalyzed Synthesis of Quinoxaline Derivatives, Tetrahedron Lett., 49, p. 7386 (2008).
[30] Yeo B.R., Hallett A.J., Kariuki B.M., Pope S.J.A., The Re(I) Coordination Chemistry of a Series of Pyrido[2,3-b]pyrazine-derived Ligands: Syntheses, Characterisation and Crystal Structures, Polyhedron, 29, p. 1088 (2010).
[31] Darabi H.R., Aghapoor K., Mohsenzadeh F., Jalili M.R., Talebian S., Ebadi-Nia L., Khatamifar E., Aghaee A., Heterogeneous SnCl2/SiO2 Versus Homogeneous SnCl2 Acid Catalysis in the Benzo[N,N]-Heterocyclic Condensation, B. Korean Chem. Soc., 32, p. 213 (2011).