Improving the Efficiency of a Square Cyclone Separator Using the Dipleg – A CFD-Based Analysis

Document Type : Research Article

Authors

Department of Mechanical Engineering, Nour Branch, Islamic Azad University, Nour, I.R. IRAN

Abstract

The present study is mainly focused on proposing an effective way to improve the efficiency of a square cyclone separator. For this purpose, a dipleg is attached under the square cyclone to investigate its effect on the performance of the square cyclone. A three-dimensional Computational Fluid Dynamics (CFD) simulation is done by solving the Reynolds-Averaged Navier-Stokes equations with the Reynolds Stress Model (RSM) turbulence model and applying the Eulerian-Lagrangian two-phase method. The turbulent dispersion of particles is predicted by the application of the Discrete Random Walk (DRW) model. The numerical results demonstrate that using dipleg produced an increase in pressure drop but it positively enhances the separation efficiency of the square cyclone. Using dipleg significantly increases the separation efficiency of the square cyclone, especially at higher inlet velocities. This can be more obvious when using dipleg which is minimized the 50% cut size of square cyclone by about 26.3%.

Keywords

Main Subjects


[1] Dong S., Jiang Y., Jin R., Dong K., Wang B., Numerical Study of Vortex Eccentricity in a Gas Cyclone, Appl. Math. Model., 80: 683-701 (2020).
[2] Misiulia D., Antonyuk S., Andersson A.G., Lundström T.S., High-Efficiency Industrial Cyclone Separator:
A CFD Study
, Powder Technol., 364: 943-953 (2020).
[4] Zhang Y., Yu G., Jin R., Chen X., Dong K., Jiang Y., Wang B., Investigation into Water Vapor and Flue Gas Temperatures on the Separation Capability of a Novel Cyclone Separator, Powder Technol., 361: 171-178 (2020).
[5] Jin R., Keshavarzian E., Dong K., Dong S., Wang B., Kwok K., Zhao M., Numerical Study on the Effect of the Supersaturated Vapor on the Performance of a Gas Cyclone, Powder Technol., 366: 324-336 (2020).
[6] Caliskan M.E., Karagoz I., Avci A., Surmen A., An Experimental Investigation into the Particle Classification Capability of a Novel Cyclone Separator, Sep. Purif. Technol., 209: 908-913 (2019).
[7] Gao Z., Wang J., Wang J., Mao Y., Time-Frequency Analysis of the Vortex Motion in a Cylindrical Cyclone Separator, Chem. Eng. J., 373: 1120-1131 (2019).
[8] Venkatesh S., Sakthivel M., Saranav H., Saravanan N., Rathnakumar M., Santhosh K.K., Performance Investigation of the Combined Series and Parallel Arrangement Cyclone Separator Using Experimental and CFD Approach, Powder Technol., 361: 1070-1080 (2020).
[9] Zhang T., Guo K., Liu C., Li Y., Tao M., Shen C., Experimental and Numerical Investigations of a Dual‐Stage Cyclone Separator, Chem. Eng. Technol., 41(3): 606-617 (2018).
[10] Obermair S., Woisetschläger J., Staudinger G., Investigation of the Flow Pattern in Different Dust Outlet Geometries of a Gas Cyclone by Laser Doppler Anemometry, Powder Technol., 138(2-3): 239-251 (2003).
[11] Caliskan M.E., Karagoz I., Avci A., Surmen A., An Experimental Investigation into the Particle Classification Capability of a Novel Cyclone Separator, Sep. Purif. Technol., 209: 908-913 (2019).
[12] Wang S., Li H., Wang R., Wang X., Tian R., Sun Q., Effect of the Inlet Angle on the Performance of
a Cyclone Separator Using CFD-DEM
, Adv. Powder Technol., 30(2): 227-239 (2019).
[13] Xu M., Yang L., Sun X., Wang J., Gong, L., Numerical Analysis of Flow Resistance Reduction Methods in Cyclone Separator, J. Taiwan Inst. Chem. E., 96: 419-430 (2019).
[14] Chitsaz H.R., Omidkhah M.R., Ghobadian B., Ardjmand M., Optimizing Different Angles of Venturi in Biodiesel Production Using CFD Analysis, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 285-295 (2019).
[15] Hussain Z., Zaman M., Nadeem M., Ullah A., CFD Modeling of the Feed Distribution System of a Gas-Solid Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 233-242 (2019).
[16] Fatahian E., Salarian H., Fatahian H., A Parametric Study of the Heat Exchanger Copper Coils Used in an Indirect Evaporative Cooling System, SN App. Sci., 2(1): 112-122 (2020).
[17] Fatahian E., Kordani N., Fatahian H., The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review, GU. J. Sci., 31(4): 1213-1227 (2018).
[18] Safikhani H., Mehrabian P., Numerical Study of Flow Field in New Cyclone Separators, Adv. Powder Technol., 27(2): 379-387 (2016).
[19] Balestrin E., Decker R.K., Noriler D., Bastos J.C.S.C., Meier H. F., An Alternative for the Collection of Small Particles in Cyclones: Experimental Analysis and CFD Modeling, Sep. Purif. Technol., 184: 54-65 (2017).
[20] Nassaj O.R., Toghraie D., Afrand M., Effects of Multi Inlet Guide Channels on the Performance of a Cyclone Separator, Powder Technol., 356: 353-372 (2019).
[21] Su Y., Zheng A., Zhao B., Numerical Simulation of Effect of Inlet Configuration on Square Cyclone Separator Performance, Powder Technol., 210(3): 293-303 (2011).
[22] Safikhani H., Allahdadi S., The Effect of Magnetic Field on the Performance of New Design Cyclone Separators, Adv. Powder Technol., 31(6): 2541-2554 (2020).
[23] Zheng A.Q., Su Y.X., Wan X., Experimental Study of a Square-Shaped Separator with Different Inlet Forms, J. Eng. Thermophys. Energy Power, 23: 293-297 (2008).
[24] Su Y., Mao Y., Experimental Study on the Gas-Solid Suspension Flow in a Square Cyclone Separator, Chem. Eng. Technol., 121(1): 51-58 (2006).
[25] Raoufi A., Shams M., Kanani H., CFD Analysis of Flow Field in Square Cyclones, Powder Technol., 191(3): 349-357 (2009).
[26] Wasilewski M., Brar L.S., Ligus G., Experimental and Numerical Investigation on the Performance of Square Cyclones with Different Vortex Finder Configurations, Sep. Purif. Technol., 239: 116588 (2020).
[27] Venkatesh S., Kumar R.S., Sivapirakasam S.P., Sakthivel M., Venkatesh D., Arafath, S.Y., Multi-Objective Optimization, Experimental and CFD Approach for Performance Analysis in Square Cyclone Separator, Powder Technol., 371: 115-129 (2020).
[28] Fatahian H., Fatahian E., Nimvari M.E., Improving Efficiency of Conventional and Square Cyclones Using Different Configurations of the Laminarizer, Powder Technol., 339: 232-243 (2018).
[29] Fatahian H., Hosseini E., Fatahian E., CFD Simulation of a Novel Design of Square Cyclone with Dual-Inverse Cone, Adv. Powder Technol., 31(4): 1748-1758 (2020).
[30] Obermair S., Woisetschläger J., Staudinger G., Investigation of the Flow Pattern In Different Dust Outlet Geometries of a Gas Cyclone by Laser Doppler Anemometry, Powder Technol., 138(2-3): 239-251 (2003).
[31] Cortes C., Gil A., Modeling the Gas and Particle Flow Inside Cyclone Separators, Prog. Energ. Combust., 33(5): 409-452 (2007).
[32] Elsayed K., Lacor C., The Effect of the Dust Outlet Geometry on the Performance and Hydrodynamics of Gas Cyclones, Comput. Fluids, 68: 134-147 (2012).
[33] Kim S.W., Lee J.W., Koh J.S., Kim G.R., Choi S., Yoo I.S., Formation and Characterization of Deposits in Cyclone Dipleg of a Commercial Residue Fluid Catalytic Cracking Reactor, Ind. Eng. Chem. Res., 51(43): 14279-14288 (2012).
[34] Qian F., Zhang J., Zhang M., Effects of the Prolonged Vertical Tube on the Separation Performance of a Cyclone, J. Hazard. Mater., 136(3): 822-829 (2006).
[35] Wang J., Bouma J.H., Dries H., An Experimental Study of Cyclone Dipleg Flow in Fluidized Catalytic Cracking, Powder Technol., 112(3): 221-228 (2000).
[36] Safikhani H., Akhavan-Behabadi M.A., Shams M., Rahimyan M.H., Numerical Simulation of Flow Field in Three Types of Standard Cyclone Separators, Adv. Powder Technol., 21(4): 435-442 (2010).
[37] Kaya F., Karagoz I., Avci A., Effects of Surface Roughness on the Performance of Tangential Inlet Cyclone Separators, Aerosol Sci. Tech., 45(8): 988-995 (2011).
[38] Karagoz, I., & Kaya, F., CFD Investigation of the Flow and Heat Transfer Characteristics in a Tangential Inlet Cyclone, Int. Commun Heat Mass., 34(9-10): 1119-1126 (2007).
[39] Chuah T.G., Gimbun J., Choong T.S., A CFD Study of the Effect of Cone Dimensions on Sampling
Aero-Cyclones Performance and Hydrodynamics
, Powder Technol., 162(2): 126-132 (2006).
[40] Wan G., Sun G., Xue X., Shi M., Solids Concentration Simulation of Different Size Particles in a Cyclone Separator, Powder Technol., 183(1): 94-104 (2008).
[42] Elsayed K., Lacor C., The Effect of Cyclone Inlet Dimensions on the Flow Pattern and Performance, Appl. Math. Model., 35(4): 1952-1968 (2011).
[43] Huang L., Kumar K., Mujumdar A.S., Simulation of a Spray Dryer Fitted with a Rotary Disk Atomizer Using a Three-Dimensional Computational Fluid Dynamic Model, Dry. Technol., 22(6): 1489-1515 (2004).
[44] Azadi M., Azadi M., Mohebbi A., A CFD Study of the Effect of Cyclone Size on Its Performance Parameters, J. Hazard. Mater., 182(1-3): 835-841 (2010).
[46] Launder B.E., Reece G.J., Rodi W., Progress in the Development of a Reynolds-Stress Turbulence Closure, J. Fluid Mech., 68(3): 537-566 (1975).
[47] Wang S., Fang M., Luo Z., Li X., Ni M., Cen K., Instantaneous Separation Model of a Square Cyclone, Powder Technol., 102(1): 65-70 (1999).
[48] Hoekstra A.J., Derksen J.J., Van Den Akker H.E.A., An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones, Chem. Eng. Sci., 54(13-14): 2055-2065 (1999).
[50] Morsi S.A.J., Alexander A.J., An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 55(2): 193-208 (1972).
[51] Raoufi, A., Shams, M., Farzaneh, M.,  Ebrahimi, R., Numerical Simulation and Optimization of Fluid Flow in Cyclone Vortex Finder, Chem. Eng. Process., 47(1): 128-137 (2008).
[53] Shukla S.K., Shukla P., Ghosh P., Evaluation of Numerical Schemes for Dispersed Phase Modeling of Cyclone Separators, Eng. Appl. Comp. Fluid., 5(2): 235-246 (2011).
[55] Su Y., Zheng A., Zhao B., Numerical Simulation of Effect of Inlet Configuration on Square Cyclone Separator Performance, Powder Technol., 210(3): 293-303 (2011).
[56] Parvaz F., Hosseini S.H., Elsayed K., Ahmadi G., Numerical Investigation of Effects of Inner Cone on Flow Field, Performance and Erosion Rate of Cyclone Separators, Sep. Purif. Technol., 201: 223-237 (2018).
[57] Pei B., Yang L., Dong K., Jiang Y., Du X., Wang B., The Effect of Cross-Shaped Vortex Finder on the Performance of Cyclone Separator, Powder Technol., 313: 135-144 (2017).
[58] Demir S., Karadeniz A., Aksel M., Effects of Cylindrical and Conical Heights on Pressure and Velocity Fields in Cyclones, Powder Technol., 295: 209-217 (2016).
[59] Huang L., Deng S., Chen Z., Guan J., Chen M., Numerical Analysis of a Novel Gas-Liquid Pre-Separation Cyclone, Sep. Purif. Technol., 194: 470-479 (2018).
[60] Chu K.W., Wang B., Xu D.L., Chen Y.X., Yu A.B., CFD–DEM Simulation of the Gas-Solid Flow in a Cyclone Separator, Chem. Eng. Sci., 66(5): 834-847 (2011).