A New Model for Methane Viscosity Based on the Theory of Averaged Intermolecular Potential Field

Document Type : Research Article

Authors

Department of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Hankou, Wuhan, P.R. 430023 P.R. CHINA

Abstract

Methane is the simplest alkane and the main constituent of natural gas, shale gas, and gas hydrate. Its viscosity has both academic and industrial importance. A new model for the methane viscosity was developed based on the theory of the averaged intermolecular potential field. The derived equations of the model were fitted to 1669 experimental data points in good agreement over the parameter ranges: from 100 to 523 K with the pressure from 0.047 up to 1000 MPa. The new model also comprehensively performed better than the famous samples in comparison. The physical base, good numerical behavior, and better comparing performance suggest that the model has considerable theoretical significance and practical application potentials.

Keywords

Main Subjects


[1] Swift G.W., Christry J.A., Kurata F., Liquid Viscosities of Methane and Propane, A1ChE, 5(1): 98-102 (1959).
[2] Huang E.T.S., Swift G.W., Kurata F., Viscosities of Methane and Propane at Low Temperatures and High Pressures, A1ChE, 12(5): 932-936(1966).
[3] Younglove B.A., Ely J.F., Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 16(4): 577-798(1987).
[4] Trengove R.D., Wakeham W.A., The Viscosity of Carbon Dioxide, Methane, and Sulfur Hexafluoride in the Limit of Zero Density, J. Phys. Chem. Ref. Data, 16(2): 175-187(1987).
[5] Dymond J.H., Awan, M.A., Correlation of High-Pressure Diffusion and Viscosity Coefficients for n-Alkanes, Int. J. Thermophys. 10(5): 941-951 (1989).
[6] Friend D.G., Ely J.F., Ingham H., Thermophysical Properties of Methane, J. Phys. Chem. Ref. Data 18(2): 583-63 8(1989).
[7] Assael M.J., Dymond J.H., Tselekidou V., Correlation of High-Pressure Thermal Conductivity, Viscosity, and Diffusion Coefficients for n-Alkanes, Int. J. Thermophys. 11(5): 863-873 (1990).
[8] Heidaryan E., Moghadasi J., Salarabadi A., A New and Reliable Model for Predicting Methane Viscosity at High Pressures and High Temperatures, J. Nat. Gas Chem. 19: 552-556(2010).
[9] Rabah, A.A., Generalized Arrhenius Correlation for Liquid Viscosity of n-Alkanes, UofKEJ 3(2): 62-68 (2013). 
[10] Khosharay Sh., Pierantozzi M., Di Nicola G., Modeling Investigation on the Viscosity of Pure Refrigerants and Their Liquid Mixtures by Using the Patel-Teja Viscosity Equation of State, International Journal of Refrigeration 85: 255-267 (2018).
[11] Rocabruno-Valdes, C.I., Ramirez-Verduzco, L.F., Hernandez, J.A., Artificial Neural Network Models to Predict Density, Dynamic Viscosity, and Cetane Number of Biodiesel, Fuel 147: 9–17 (2015).
[13] Diller, D.E., Measurements of the Viscosity of Compressed Gaseous and Liquid MethanePhysica A: Statistical Mechanics and Its Applications 104(3): 417-426(1980).
[14] Gulik, P.S., Mostert, R., Berg, H.R., The Viscosity of Methane at 25°C up to 10 kbar, Physica A: Statistical Mechanics and Its Applications, 151(1): 153-166 (1988).
[15] Gulik, P.S., Mostert, R., Berg, H.R., The Viscosity of Methane at 273 K up to 1 GPa, Fluid Phase Equilibria 79: 301-311(1992).
[17] Schley P., Jaeschke M., Küchenmeister C., Vogel E., Viscosity Measurements and Predictions for Natural Gas, Int. J. Thermophys. 25(6): 1623-1652(2004).
[18] May, E.F., Berg, R.F., Moldover, M.R., 2007. Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities, Int. J. Thermophys. 28(4): 1085-1110 (2007).
[19] Atilhan M., Aparicio S., Alcalde R., Iglesias-Silva G.A., El-Halwagi M., Hall K.R., Viscosity Measurements and Data Correlation for Two Synthetic Natural Gas Mixtures, J. Chem. Eng. Data, 55: 2498–2504(2010).
[20] Ling K., “Gas Viscosity at High Pressure and High Temperature”, Ph.D. Dissertation, Texas A&M University, Petroleum Engineering, (2010).
[21] Vogel E., Küchenmeister C., Bich E., Reference Correlation of the Viscosity of Propane, J. Phys. Chem. Ref. Data, 27: 947-970(1998).
[22] Assael M.J., Dymond J.H., Papadaki M., Patterson P.M., Correlation and Prediction of Dense Fluid Transport Coefficients. I. n-Alkanes, Int. J. Thermophys. 13(2): 269-281(1992).
[23] Ciotta F., Trusler J.P.M., Vesovic V., Extended Hard-Sphere Model for the Viscosity of Dense Fluids, Fluid Phase Equilibria 363: 239-247 (2014).
[24] Riesco N., Vesovic V., Extended Hard-Sphere Model for Predicting the Viscosity of Long-Chain N-Alkanes, Fluid Phase Equilibria 425: 385-392 (2016).
[25] Quinones-Cisneros S.E., Deiters U.K., Generalization of the Friction Theory for Viscosity Modeling, J. Phys. Chem. B, 110: 12820-12834 (2006).
[26] Das S.K., Singh R.P., Tests of Predictive Viscosity Models for Pure Liquids, Int. J. Thermophys. 20, 815-823(1999).
[27] Macías-Salinas R., Aquino-Olivos M.A., García-Sánchez F., Viscosity Modelling of Reservoir Fluids over Wide Temperature and Pressure Ranges, Chem. Eng. Trans., 32: 1573-1578 (2013).
[28] Zhang A., Yang X.H., Zhang S.X., An Approach to the Averaged Intermolecular Potential Field of Methane from Viscosity, Chem. Phys. Lett. 682: 82–86(2017).
[31] Yang X.H., Zhu W.L., A Theoretical Model for the Density and Temperature Dependent Viscosity of Hydrocarbon Gases, Petrol. Sci. Tech. 34(8): 765-770 (2016).
[32] Lemmon, E.W., Huber, M.L., McLinden, M.O., NIST Reference Fluid Thermodynamic and Transport Properties - REFPROP, NIST Standard Reference Database 23 - Version 8.0, (2007).
[33] Anal Chem, Tablecurve: The Fastest Curve Fitting Software on Your Desktop Today, Chem. Eng. News 72: 41-45 (1994).