The Effect of Different Light Spectra on Beta-Carotene Production by Dunaliella salina

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemical Engineering, Faculty of Engineering, University of Bojnord, Bojnord, I.R. IRAN

Abstract

This study focused on the effect of different light intensities and spectra on the beta-carotene production within Dunaliella salina cells (green eukaryote microalgae) which are purified from Urmia Lake in northwest Iran. For this purpose, four LED light spectra (white light: 360–760 nm, red light: 620–645 nm, yellow light: 587–595 nm, and blue light: 460–475 nm) were used in this experimental research. The light intensity of 200 µmol/(m2 s) was considered for each LED light spectra. The highest beta-carotene content extracted under a sequential combination of colored light (white, blue, red, and yellow respectively) was 16.93 µg of beta-carotene per mg of cell dry weight and the highest accumulated beta-carotene within the cells among single-colored light was 15.16 µg /mg when the cells were cultivated under yellow light.

Keywords

Main Subjects


[1] Tandeau de Marsac N., Houmard J., Adaptation of Cyanobacteria to Environmental Stimuli: New Steps Towards Molecular Mechanisms, FEMS. Microbiol. Lett., 104(1-2): 119-189 (1993).
[2] Hashemi A., Pajoum Shariati F., Sohani E., Azizi S., Hosseinifar S.Z., Delavari Amrei H., CO2 Biofixation by Synechococcus Elongatus from the Power Plant Flue Gas under Various Light–Dark Cycles. Clean. Technol. Envir., 1-9 (2020),
[3] Tavakoli O., Hajinajaf N., Fallahi A., Sarafzadeh M.H., Cultivation of Mixed Microalgae Using Municipal Wastewater: Biomass Productivity, Nutrient Removal, and Biochemical Content. Iran. J. Biotechnol. (2020),
[4] Azizi S., Hashemi A., Pajoum Shariati F., Bonakdarpour B., Safamirzaei M., Fouling Identification in Reciprocal Membrane Photobioreactor (RMPBR) Containing Chlorella Vulgaris Species: Hydraulic Resistances Assessment. J. Chem. Technol. Biotechnol., (2020),
[5] Norton T.A., Melkonian  M., Andersen R.A., Algal Biodiversity. Phycologia., 35(4): 308-326 (1996).
[6] Rodolfi L., Chini Zittelli G., Bassi N., Padovani G., Biondi N., Bonini G., Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low‐Cost Photobioreactor, Biotechnol. Bioeng., 102(1): 100-112 (2009).
[9] Phadwal K., Singh P., Isolation and Characterization of an Indigenous Isolate of Dunaliella sp. for β‐carotene and Glycerol Production from a Hypersaline Lake in India, J. Basic Microbiol., An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms. 43(5): 423-429 (2003).
[10] Aasen A., Eimhjellen K., Liaaen-Jensen S., An Extreme Source of Beta-Carotene, Acta. Chem. Scand., 23(7): 2544-2545 (1969).
[11] El-Baky H. A., El-Baz F. K., El-Baroty G. S., Production of Antioxidant by the Green Alga Dunaliella salina, Int. J. Agric. Biol. 6(1): 1560-8530 (2004).
[12] Hashemi A., Pajoum Shariati F., Delavari Amrei H., Heydarinasab A., Growth Pattern and β-Carotene Production of Dunaliella salina Cells in Different Salinities. J. Food. Technol. Nutr, 16(4): 45-50 (2019).
[13] Hashemi A., Pajoum Shariati F., Delavari Amrei H., Heydarinasab A., The Effect of Instantaneous and Slow Release Salt Stress Methods on Beta-Carotene Production within Dunaliella Salina Cells. Journal of Chemistry and Chemical Engineering (IJCCE), 40(5): 1642-1652  (2021).
[14] Chisti Y., Biodiesel from Microalgae, Biotechnol. adv., 25(3): 294-306 (2007).
[15] Azizi S., Bayat B., Tayebati H., Hashemi A., Pajoum Shariati F., Nitrate and Phosphate Removal from Treated Wastewater by Chlorella Vulgaris under Various Light Regimes within Membrane Flat Plate Photobioreactor. Environ. Prog. Sustain. Energy., (2020).
[16] Leon R., Martın M., Vigara J., Vilchez C., Vega J.M., Microalgae Mediated Photoproduction of β-Carotene in Aqueous–Organic Two Phase Systems, Biomol. Eng., 20(4-6): 177-182 (2003).
[17] Del Campo J.A., García-González M., Guerrero M.G., Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives, Appl. Microbiol. Biotechnol., 74(6): 1163-1174 (2007).
[18] Telfer A., What is β–Carotene Doing in the Photosystem II Reaction Centre?, Philosophical Transactions of the Royal Society of London B: Biological Sciences. 357(1426): 1431-1440 (2002).
[19] Hashemi A., Monire M., Pajoum Shariati F., Delavari Amrei H., Beta-Carotene Production within Dunaliella Salina Cells under Salt Stress Condition in an indoor Hybrid Helical Tubular Photobioreactor. Can. J. Chem. Eng. 98(1): 69-74 (2020).
[20] Delavari Amrei H., Nasernejad B., Ranjbar R., Rastegar S., An Integrated Wavelength Shifting Strategy for Enhancement of Microalgal Growth
Rate in PMMA-and Polycarbonate-Based Photobioreactors,
Eur. J. Phycol., 49: 324-331 (2014).
[21] Morowvat M. H., Ghasemi Y., Culture Medium Optimization for Enhanced β-Carotene and Biomass Production by Dunaliella Salina in Mixotrophic Culture, Biocatal. Agric. Biotechnol., 7: 217-223 (2016).
[22] Helena S., Zainuri M., Suprijanto J., Microalgae Dunaliella Salina (Teodoresco, 1905) Growth Using the LED Light (Llight Limiting Dioda) and Different Media. Aquat. Procedia, 7: 226-230 (2016).
[23] Li Y., Cai X., Gu W., Wang G., Transcriptome Analysis of Carotenoid Biosynthesis in Dunaliella Salina under Red and Blue Light. J. Oceanol. Limnol, 38(1): 177-185 (2020).
[24] Xu Y., Harvey P.J., Carotenoid Production by Dunaliella Salina under Red Light, Antioxid, 8(5): 123 (2019).
[26] El Baz F.K., Aboul-Enein A.M., El-Baroty G.S., Youssef A Abdel-Baky H.H., Accumulation of Antioxidant Vitamins in Dunaliella Salina, 2(4): 220-223 (2002).
[28] Tammam A.A., Fakhry E. M., El-Sheekh M., Effect of Salt Stress on Antioxidant System and the Metabolism of the Reactive Oxygen Species in Dunaliella Salina and Dunaliella Tertiolecta, Afr. J. Biotechnol., 10(19): 3795-3808 (2011).
[30] Hosseini Tafreshi A., Shariati M., Dunaliella Biotechnology: Methods and Applications, J. Appl. Microbiol. 107(1): 14-35 (2009).
[31] Lamers P. P., Janssen M., De Vos R. C., Bino R. J., Wijffels R. H., Carotenoid and Fatty Acid Metabolism in Nitrogen-Starved Dunaliella Salina, a Unicellular Green Microalga, J. Biotechnol., 162(1): 21-27 (2012).
[34] Orset S. C., Young A. J., Exposure to Low Irradiances Favors the Synthesis of 9-Cis β, β-Carotene in Dunaliella Salina (Teod.), Plant Physiol., 122(2): 609-618 (2000).
[35] Fu W., Guðmundsson Ó., Paglia G., Herjólfsson G., Andrésson Ó.S., Palsson B. Ø., Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella Salina with Light-Emitting Diodes and Adaptive Laboratory Evolution, Appl. Microbiol. Biotechnol., 97(6): 2395-2403 (2013).