A Computational Study on the Some Small Graphene-Like Nanostructures as the Anodes in Na−Ion Batteries

Document Type : Research Article

Authors

1 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

2 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

3 School of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11365-4563 Tehran, I.R. IRAN

Abstract

In this work, the interactions between the Na neutral atom and Na+ ion and three nanostructures such as sumanene (SM), corannulene (CN), and nanosheet were investigated. The main goal of this work is to calculate the cell voltage (V) for Na−ion batteries, NIBs. The total energies, geometry optimizations, and density of states (DOS) diagrams were studied by using M06−2X level and 6−31+G(d,p) basis set. The DFT calculations indicated that the energy adsorption between Na+ ion and nanostructures, Ead,were increased in the order:SM-i > Sheet > CN-i > CN > SM. Nevertheless, the Vcell for SM has obtained the highest value. The Vcell of NABs are increased in the order: SM > CN > Sheet > SM-i > CN-i.This research theoretically described the possible uses of the mentioned nanostructures as anode the anodes in Na−ion Batteries.

Keywords

Main Subjects


[1] Xu W., Wang J., Ding F., Chen X., Lisybulin E., Zhang Y., Zhang J.−G., Scale-Up Production of High-Tap-Density Carbon/Mnox/Carbon Nanotube Microcomposites for Li-Ion Batteries with Ultrahigh Volumetric Capacity, Energy Environ.. Sci., 7: 513–537 (2014).
[2] Er D., Li J., Liguib M., Gogotsi Y., Shenoy V.B., Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries, ACS Appl. Mater. Interfaces., 6: 11173–11179 (2014).
[5] Vessally E., Soleimani–Amiri S., Hosseinian A., Edjlal L., Bekhradnia A., Selective Detection of Cyanogen Halides by BN Nanocluster: A DFT Study, Physica E., 87: 308–311 (2017).
[6] Hosseinian A., Saedi Khosroshahi E., Nejati K., Edjlali E., Vessally E., A DFT Study on Graphene, SiC, BN, and AlN Nanosheets as Anodes in Na-Ion BatteriesJ. Mol. Model., 23: 354-    (2017).
[7] Nejati K., Hosseinian A., Edjlali L., Vessally E., The Effect of Structural Curvature on the Cell Voltage of BN Nanotube Based Na-Ion Batteries, J. Mol. Liq., 229: 167–171(2017).
[8] Subalakshmi P., Sivashanmugam A., CuO Nano Hexagons, an Efficient Energy Storage Material for Li-Ion Battery Application, J. Alloys Compd., 690: 523–531 (2017).
[9] Nejati K., Hosseinian A., Bekhradnia A., Vessally E., Edjlal L., Na-ion Batteries Based on the Inorganic BN Nanocluster Anodes: DFT Studies, J. Mol. Graph. Model., 74: 1–7 (2017).
[11] Hao J.Y., Zheng J.F., Ling F.L., Chen Y.K., Jing H. R., Zhou T.W., Fang L., Zhou M., Strain-Engineered Two-Dimensional MoS2 as Anode Material for Performance Enhancement of Li/Na-Ion Batteries, Sci. Rep., 8: 2079 (2018).
[12] Li W., Yang Y.M., Gang Z., Zhang Y.W., Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery, Nano Lett., 15: 1691−1697 (2015).
[13] Wang D.S., Gao Y., Liu Y.H., Jin D., Gogotsi Y., Meng X., Du F., Chen G., Wei Y.J., First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond, J. Phys. Chem. C., 121: 13025−13034 (2017).
[14] Kim S.K., Chang H., Kim C.M., Yoo H., Kim H., Jang H.D., Fabrication of Ternary Silicon-Carbon Nanotubes-Graphene Composites by Co-Assembly in Evaporating Droplets for Enhanced Electrochemical Energy Storage, J. Alloys Compd., 751: 43−48 (2018).
[15] Sakurai H., Daiko T., Hirao T., A Synthesis of Sumanene, a Fullerene Fragment, Science, 301: 1878−1878 (2003).
[16] Barth W. E.; Lawton R. G., A Practical, Large Scale Synthesis of the Corannulene System, J. Am. Chem. Soc., 88: 380–381 (1966).
[17] Lawton R.G., Barth, W.E., Synthesis of Corannulene, J. Am. Chem. Soc., 93: 1730–1745 (1971).
[18] (a) Vessally E., Gharibzadeh F., Edjlali L., Eshaghi M., Mohammadi R., A DFT Study on Sumanene, Corannulene and Nanosheet as the Anodes in Li−Ion Batteries, Iran. J. Chem. Chem. Eng. (IJCCE), 39(6): 51-62 (2020).
      (dMajedi S, Behmagham F., Vakili M., Theoretical View on Interaction Between Boron Nitride Nanostructures and Some Drugs, J. Chem. Lett., 1: 19-24 (2020).
[19] Chai J.−D., Head−Gordon M., Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections, Phys. Chem. Chem. Phys., 10: 6615 (2008).
[20] Frisch M.J., et.al., Gaussian09 Program, Gaussian Inc., Wal Nangford, CT, (2009).
[21] S.F. Boys, F. Bernardi, The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies, Some Procedures with Reduced Errors, Mol. Phys.,.,19: 553–561 (1970).
[22] N. O’Boyle, A. Tenderholt, K. Langner, A Library for Package‐Independent Computational Chemistry Algorithms, J. Comput. Chem., 29: 839–845 (2018).
[23] Zuo C., Chen Q., Tian L., Waller L., Asundi A., Transport of Intensity Phase Retrieval and Computational Imaging for Partially Coherent Fields: The Phase Space Perspective, Optics and Lasers in Engineering., 71: 20-32 (2015).
[24] Li X., Feng Y., Liu B., Yi D., Yang X., Zhang W.,... Bai P., Influence of NbC particles on microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by Laser Cladding, Journal of Alloys and Compounds., 788: 485-494 (2019).
[25] Wang M., Yang L., Hu B., Liu J., He L., Jia Q., ... Zhang Z., Bimetallic NiFe Oxide Structures Derived from hollow NiFe Prussian Blue Nanobox for Label-Free Electrochemical Biosensing Adenosine Triphosphate, Biosensors & Bioelectronics., 113: 16-24 (2018).
[26] Liu Y., Xu T., Liu Y., Gao Y., Di C., Wear and heat Shock Resistance of Ni-WC Coating on Mould Copper Plate Fabricated by Laser, Journal of Materials Research and Technology, 9(4): 8283-8288 (2020).
[27] Wang P., Li Z., Xie Q., Duan W., Zhang X., ... Han H., A Passive Anti-Icing Strategy Based on a Superhydrophobic Mesh with Extremely Low Ice Adhesion Strength, Journal of Bionic Engineering., 18: 55 -64 (2021).
[28] Chen X., Wang D., Wang T., Yang Z., Zou X., Wang P., ... Wei Z., Enhanced Photoresponsivity of a GaAs Nanowire Metal-Semiconductor-Metal Photodetector by Adjusting the Fermi Level, ACS Applied Materials & Interfaces., 11(36): 33188-33193 (2019).
[29] Li H., Tang J., Kang Y., Zhao H., Fang D., Fang X., ... Wei Z., Optical properties of Quasi-Type-II Structure in GaAs/GaAsSb/GaAs Coaxial Single Quantum-Well Nanowires, Applied Physics Letters., 113(23): 233104 (2018).
[30] Lu H., Zhu Y., Yuan Y., He L., Zheng B., Zheng X., ... Du H., LiFSI as a Functional Additive of the Fluorinated Electrolyte for Rechargeable Li-S Batteries, Journal of Materials Science, Materials in Electronics., 32(5): 5898-906 (2021).
[31] Zhang H., Guan W., Zhang L., Guan X., & Wang S., Degradation of an Organic Dye by Bisulfite Catalytically Activated with Iron Manganese Oxides: The Role of Superoxide Radicals, ACS Omega., 5(29): 18007-18012 (2020).
[32] Zhang H., Sun M., Song L., Guo J., & Zhang L., Fate of NaClO and Membrane Foulants During Insitu Cleaning of Membrane Bioreactors: Combined Effect on Thermodynamic Properties of Sludge, Biochemical Engineering Journal., 147: 146-152 (2019).
[33] Sun M., Yan L., Zhang L., Song L., Guo J., ... Zhang H., New Insights into the Rapid Formation of Initial Membrane Fouling after In-Situ Cleaning in a Membrane Bioreactor, Process Biochemistry (1991)., 78: 108-113 (2019).
[34] Liu Z., Wang C., Zhu Z., Lou Q., Shen C., Chen Y., ... Shan C., Wafer-Scale Growth of Two-Dimensional Graphitic Carbon Nitride Films, Matter., 4(5): 1625-1638 (2021).
[35] Dai Z., Xie J., Chen Z., Zhou S., Liu J., Liu W., ... Ren X., Improved Energy Storage Density and Efficiency of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2.3Nb1.3O3 Lead-Free Ceramics, Chemical Engineering Journal (Lausanne, Switzerland : 1996)., 410: 128341 (2021).
[36] Dai Z., Guo S., Gong Y., & Wang Z., Semiconductor Flexoelectricity in Graphite-Doped SrTiO3 Ceramics, Ceramics International., 47(5): 6535-6539 (2021).
[37] Zhang Y., Liu G., Zhang C., Chi Q., Zhang T., Feng Y., ... Cao D., Low-Cost MgFexMn2-xO4 Cathode Materials for High-Performance Aqueous Rechargeable Magnesium-Ion Hatteries, Chemical Engineering Journal (Lausanne, Switzerland : 1996)., 392: 123652 (2020).
[38] Duan Y., Liu Y., Chen Z., Liu D., Yu E., Zhang X., ... Du H., Amorphous Molybdenum Sulfide Nanocatalysts Simultaneously Realizing Efficient Upgrading of  Residue and Synergistic Synthesis of 2D MoS2 Nanosheets/Carbon Hierarchical Structures, Green Chemistry : An international Journal and Green Chemistry Resource : GC., 22(1): 44-53 (2020).
[39] Kang Y., Zhang Y., Shi Q., Shi H., Xue D., ... Shi F., Highly Efficient Co3O4/CeO2 Hetero Structure as Anode for Lithium-Ion Batteries, Journal of Colloid and Interface Science., 585: 705-715 (2021).
[40] Tan L., Sun Y., Wei C., Tao Y., Tian Y., An Y., ... Feng J., Design of Robust, Lithiophilic, and Flexible Inorganic‐Polymer Protective Layer by Separator Engineering Enables Dendrite‐Free Lithium Metal Batteries with LiNi0.8Mn0.1Co0.1O2 Cathode, Small (Weinheim an der Bergstrasse, Germany)., 17(13): 2007717 (2021).
[41] Liu C., Deng F., Heng Q., Cai X., Zhu R., ... Liserre M., Crossing Thyristor Branches Based Hybrid Modular Multilevel Converters for DC Line Faults, IEEE Transactions on Industrial Electronics (1982)., 1 (2020).
[42] Pan Q., Zheng Y., Tong Z., Shi L., Tang Y., Novel Lamellar Tetrapotassium Pyromellitic Organic for Robust High‐Capacity Potassium Storage, Angewandte Chemie (International ed.)., 60(21): 11835-11840 (2021).
[43] Tong X., Ou X., Wu N., Wang H., Li J., ... Tang Y., High Oxidation Potential ≈6.0 V of Concentrated Electrolyte toward High‐Performance Dual‐Ion Battery, Advanced Energy Materials., 2100151 (2021).
[44] Yin H., Han C., Liu Q., Wu F., Zhang F., ... Tang Y., Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium‐Ion Batteries, Small (Weinheim an der Bergstrasse, Germany)., 28: 2006627 (2021).
[45] Wu N., Zhou X., Kidkhunthod P., Yao W., Song T., ... Tang Y., K‐Ion Battery Cathode Design Utilizing Trigonal Prismatic Ligand Field, Advanced Materials (Weinheim)., 9: 2101788 (2021).
[46] Miao Z., Xiaohe S., Xuewu O., Yongbing T., Rechargeable Batteries Based on Anion Intercalation Ggraphite Cathodes, Energy Storage Materials., 16: 65-84 (2019).
[47] Chen L., Xu J., Zhang M., Rong T., Jiang Z., ... Li P., Systematic Study on Mechanical and Electronic Properties of Ternary VAlN, TiAlN and WAlN Systems by First-Principles Calculations, Ceramics International., 47(6): 7511-7520 (2021).
[48] Wang X., Feng Z., Xiao B., Zhao J., Ma H., Tian Y., ... Tan L., Polyoxometalate-Based Metal–Organic Framework-Derived Bimetallic Hybrid Materials for Upgraded Electrochemical Rreduction of Nitrogen, Green Chemistry: An International Journal and Green Chemistry Resource : GC., 22(18): 615769 (2020).
[49] Wang R., Yuan Y., Zhang J., Zhong X., Liu J., Xie Y., ... Xu Z., Embedding Fe2P Nanocrystals in Bayberry-Like N, P-Enriched Carbon Nanospheres as Excellent Oxygen Reduction Electrocatalyst for Zncair Battery, Journal of Power Sources., 501: 230006 (2021).
[52] Simos T. E., Tsitouras C., 6th Order Runge-Kutta Pairs for Scalar Autonomous IVP, Applied and Computational Materials, Applied and Computational Nathematics, 19(3): 412-421(2020).
[53]  Jalali Sarvestani M. R., Charehjou P., Fullerene (C20) as a Potential Adsorbent and Sensorfor the Removal And Detection of Picric Acid Contaminant: DFT Studies, Cent. Asian J. Environ. Sci. Technol. Innov., 2: 12-19 (2021).
[54]  Rasouli A., Bafkar A., Chaghakaboodi Z., Kinetic and Equilibrium Studies of Adsorptive Removal of Sodium-Ion onto Wheat Straw and Rice Husk Wastes, Cent. Asian J. Environ. Sci. Technol. Innov., 1: 310-329 (2020).
[55] Ali A., Iqbal M. M., Waheed A., Co-treatment of chlorophenol and methanolic wastes, Cent. Asian J. Environ. Sci. Technol. Innov., 1: 277-280 (2020).
[56] Bafkar A., Kinetic and Equilibrium Studies of Adsorptive Removal of Sodium-Ion onto Wheat Straw and Rice Husk Wastes, Cent. Asian J. Environ. Sci. Technol. Innov., 1:310-329 (2020).
[57] Awan B., Sabeen M., Shaheen S., Mahmood Q., Ebadi, A., Toughani, M. Phytoextraction of Zinc Contaminated Water by Tagetes minuta L., Cent. Asian J. Environ. Sci. Technol. Innov., 1: 150-158 (2020).
[58] Qayyum, S., Khan I., Meng K., Zhao Y., Peng C., A Review on Remediation Technologies for Heavy Metals Contaminated Soil, Cent. Asian J. Environ. Sci. Technol. Innov., 1: 21-29 (2020).
[59] Hidehiro S., Taro D., Hiroyuki S., Toru A., Toshikazu H.,Structural Elucidation of Sumanene and Generation of Its Benzylic Anions, J. Am. Chem. Soc., 127: 11580 −11581, (2005).
[60]  Scott L.T., Hashemi M.M., Bratcher M.S., Corannulene Bowl-to-Bowl Inversion is Rapid at Room Temperature, J. Am. Chem. Soc., 114(5): 1920–1921 (1992).