The Effect of Instantaneous and Slow-Release Salt Stress Methods on Beta-Carotene Production within Dunaliella Salina Cells

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemical Engineering, Faculty of Engineering, University of Bojnord, Bojnord, I.R. IRAN

Abstract

The main concept of the present study is taken from the growth pattern of Dunaliella salina (green unicellular eukaryote microalgae) in Urmia Lake which is the second biggest saline lake in the world. In this study, different models of salt stress, including instantaneous (1 and 2 M) and consecutive slow-release salt stresses (0.5 M) were tested, and the amount of beta-carotene for each test was evaluated. According to the results, the highest amount of beta-carotene was obtained by the slow release method of salt injection with the amount of 9.01 µg of beta-carotene per mg of the dry weight of microalgae. The largest amount of beta-carotene production in 1 and 2 M  instantaneous salt stresses method were recorded as 4.35 and 0.65 µg/mg respectively which were up to 2 and 14 times lower than the highest beta-carotene production under the slow-release salt stress method.

Keywords

Main Subjects


[1] Jin E.S., Melis A., Microalgal Biotechnology: Carotenoid Production by the Green Algae Dunaliella salina, Biotechnol. Bioprocess. Eng., 8(6): 331 (2003).
[2] Azizi S., Hashemi A., Pajoum Shariati F., Bonakdarpour B., Safamirzaei M., Fouling Identification in Reciprocal Membrane Photobioreactor (RMPBR) Containing Chlorella vulgaris Species: Hydraulic Resistances Assessment, J. Chem. Technol. Biotechnol., (2020),
        doi: 10.1002/jctb.6552
[4] Mata, T.M., Martins A.A., Caetano N.S., Microalgae for Biodiesel Production and Other Applications: A Review, Renew. Sust. Energ. Rev., 14(1): 217-232 (2010).
[5] Hashemi A., Pajoum Shariati F., Sohani E., Azizi S., Hosseinifar S.Z., Delavari Amrei H., CO2 Biofixation By Synechococcus Elongatus from the Power Plant Flue Gas under Various Light–Dark Cycles. Clean. Technol. Envir., 1-9 (2020).
        doi: 10.1007/s10098-020-01912-0
[6] Azizi S., Bayat B., Tayebati H., Hashemi A., Pajoum Shariati F., Nitrate and Phosphate Removal from Treated Wastewater by Chlorella vulgaris under Various Light Regimes within Membrane Flat Plate Photobioreactor. Environ. Prog. Sustain. Energy., (2020).
        doi: 10.1002/ep.13519
[7] Hosseini M.K., Pajoum Shariati F., Hosseini P.K., Azizi S., Hashemi A., "The Effect of Polymeric Granule as Mechanical Cleaning Technology on Membrane Fouling in a Hybrid Microalgal Membrane Photobioreactor (HMPBR)." 6th MEMTEK International Symposium on Membrane Technologies and Applications., 18-20 November, Istanbul, Turkey (2019).  
[8] Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M.R., Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low‐Cost Photobioreactor, Biotechnol. Bioeng., 102(1): 100-112 (2009).
[9] Hosseini Tafreshi A., Shariati M., Dunaliella Biotechnology: Methods and Applications, J. Appl. Microbiol., 107(1): 14-35 (2009).
[11] Ghasemi Y., Rasoul-Amini S., Morowvat M., Algae for the Production of SCP. Bioprocess Sciences and Technology. Nova Science Publishers, Inc,163-84 (2011).
[12] Borowitzka M.A., Dunaliella: Biology, Production, and Markets. Handbook of Microalgal Culture: Appl. Phycol. Biotechnol., 359-368 (2013).
[14] Leach G., Oliveira G., Morais r., Production of a Carotenoid‐Rich Product by Alginate Entrapment and Fluid‐Bed Drying of Dunaliella salina. J. Sci. Food. Agr., 76(2): 298-302 (1998).
[15]  Hashemi A., Pajoum Shariati F., Delavari Amrei H., Heydarinasab A., Growth Pattern and β-Carotene Production of Dunaliella salina Cells in Different Salinities, J. Food. Technol. Nutr, 16(4): 45-50 (2019).
[16] Del Campo J.A., García-González M., Guerrero M.G., Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives, Appl. Microbiol. Biot., 74(6): 1163-1174 (2007).
[17] Tanada T., The Photosynthetic Efficiency of Carotenoid Pigments in Navicula Minima, Am. J. Bot., 38(4): 276-283 (1951).
[19] Hashemi A., Moslemi M., Pajoum Shariati F., Delavari Amrei H., Beta‐Carotene Production Within Dunaliella salina Cells under Salt Stress Condition in an Indoor Hybrid Helical‐Tubular Photobioreactor. Can. J. Chem. Eng, 98(1): 69-74 (2020).
[20] Delavari Amrei H., Nasernejad B., Ranjbar R., Rastegar S., An Integrated Wavelength-Shifting Strategy for Enhancement of Microalgal Growth Rate in PMMA-and Polycarbonate-Based Photobioreactors, Eur. J. Phycol., 49(3): 324-331 (2014).
[21] Leon R., Martın M., Vigara J., Vilchez C., Vega J.M., Microalgae Mediated Photoproduction of β-carotene in Aqueous–Organic Two Phase Systems, Biomol. Eng., 20(4-6): 177-182 (2003).
[22] Morowvat M.H., Ghasemi Y., Culture Medium Optimization for Enhanced β-carotene and Biomass Production by Dunaliella salina in Mixotrophic Culture, Biocatal. Agric Biotechnol., 7: 217-223 (2016).
[24] Hadi M., Shariati M., Afsharzadeh S., Microalgal Biotechnology: Carotenoid and Glycerol Production by the Green Algae Dunaliella Isolated from the Gave-Khooni Salt Marsh, Iran. Biotechnol. Bioprocess. Eng., 13(5): 540 (2008).
[25] García F., Freile-Pelegrín Y., Robledo D., Physiological Characterization of Dunaliella sp.(Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour. Technol., 98(7): 1359-1365 (2007).
[26] Fazeli M., Tofighi H., Samadi N., Jamalifar H.,  Effects of Salinity on β-carotene Production by Dunaliella tertiolecta DCCBC26 Isolated from the Urmia Salt Lake, North of Iran. Bioresour. Technol., 97(18): 2453-2456 (2006).
[27] Rao A.R., Dayananda C., Sarada R., Shamala T.R., Ravishankar G.A., Effect of Salinity on Growth of Green Alga Botryococcus Braunii and Its Constituents, Bioresour. Technol., 98(3): 560-564 (2007).
[28] Borowitzka M.A., The ‘Stress’ Concept in Microalgal Biology—Homeostasis, Acclimation and Adaptation, J. Appl. Phycol., 30(5): 2815-2825 (2018).
[29] Lakeman M.B., Von Dassow P., Cattolico R.A., The Strain Concept in Phytoplankton Ecology. Harmful. Algae., 8(5): 746-758 (2009).
[30] Galluzzi, L., Bravo-San Pedro J.M., Kepp O., Kroemer G., Regulated Cell Death and Adaptive Stress Responses, Cell. Mol. Life. Sci., 73(11-12): 2405-2410 (2016).
[32] Timmermans K.R., Veldhuis M.J., Brussaard C.P., Cell Death in Three Marine Diatom Species in Response to Different Irradiance Levels, Silicate, or Iron Concentrations, Aquat. Microb. Ecol., 46(3): 253-261 (2007).
[33] Borowitzka M.A., Borowitzka L.J., Kessly D., Effects of Salinity Increase on Carotenoid Accumulation in the Green Alga Dunaliella salina, J. Appl. Phycol., 2(2): 111-119 (1990).
[35] Pick U., Adaptation of the Halotolerant Alga Dunaliella to High Salinity, In "Salinity: Environment-Plants-Molecules", Springer 97-112 (2002).
[36] Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H.J., Gene Expression Profiles During the Initial Phase of Salt Stress in Rice. The Plant Cell., 13(4): 889-905 (2001).
[39] Nedelcu A.M., Sex as a Response to Oxidative Stress: Stress Genes Co-Dopted for Sex, Proceedings of the Royal Society of London B: Biolog. Sci., 272(1575): 1935-1940 (2005).
[40] Bravo I., Figueroa R.I., Towards an Ecological Understanding of Dinoflagellate Cyst Functions. Microorganisms., 2(1): 11-32 (2014).
[42] Lesser M.P., Oxidative Stress in Marine Environments: Biochemistry and Physiological Ecology, Annu. Rev. Physiol., 68: 253-278 (2006).
[44] Malanga G., Calmanovici G., Puntarulo S., Oxidative Damage to Chloroplasts from Chlorella vulgaris Exposed to Ultraviolet‐B Radiation, Physiol Plantarum., 101(3): 455-462 (1997).
[45] El Baz F.K., Aboul-Enein A.M., El-Baroty G.S., Youssef A.M., Abdel-Baky H.H., Accumulation of Antioxidant Vitamins in Dunaliella salina, (2002).
[47] Katz A., Pick U., Avron M., Modulation of Na+/H+ Antiporter Activity by Extreme pH and Salt in the Halotolerant Alga Dunaliella salina, Plant physiol., 100(3): 1224-1229 (1992).
[48] Karni L., Avron M., Ion Content of the Halotolerant Alga Dunaliella salina, Plant Cell Physiol., 29(8): 1311-1314 (1988).
[50] Bickerton P., Sello S., Brownlee C., Pittman J.K., Wheeler G.L., Spatial and Temporal Specificity of Ca2+ Signalling in Chlamydomonas reinhardtii in Response to Osmotic Stress, New Phytol., 212(4): 920-933 (2016).
[51] Cifuentes A., Gonzalez M.A., Parra O.O., The Effect of Salinity on the Growth and Carotenogenesis in Two Chilean Strains of Dunaliella salina Teodoresco, Biol. Res., 29: 227-236 (1996).
[53] Moulton T., Burford M., The Mass Culture of Dunaliella viridis (Volvocales, Chlorophyta) for Oxygenated Carotenoids: Laboratory and Pilot Plant Studies, Thirteenth International Seaweed Symposium; Springer (1990).
[54] Cifuentes A.S., González M., Conejeros M., Dellarossa V., Parra O., Growth and Carotenogenesis in Eight Strains of Dunaliella salina Teodoresco from Chile, J. Appl. Phycol., 4(2): 111 (1992).