Removal of Ni (II) Ions from Wastewater by Raw and Modified Plant Wastes as Adsorbents: A Review

Document Type : Review Article

Authors

1 Department of Civil Engineering, University College of Engineering Ramanathapuram, Ramanathapuram - 623 513, Tamil Nadu, INDIA

2 Department of Civil Engineering, Sethu Institute of Technology, Kariapatti - 626 115, Tamil Nadu, INDIA

3 Department of Civil Engineering, University College of Engineering Dindigul, Dindigul - 624 622, Tamil Nadu, INDIA

Abstract

Adsorption may be used to process significant metal particles in contaminated wastewater by various methods. The authors looked at various adsorbents for the expulsion of Ni(II) particles from an aquatic environment by different researchers. This paper aims to gather scattered open knowledge on a large variety of potentially persuasive adsorbents for the removal of Ni(II) particles. The present work on the usage of nickel by various natural/modified adsorbents was studied profoundly, for example, natural/modified agricultural waste, agricultural activated carbon, algae, fungal and, aquatic plant biomasses. This performance was assessed for removal efficiency and the sorbent capacity of used natural/waste materials in the system processes. Isotherm and kinetic study results were obtained from pH solution equilibrium contact time,  adsorbent dose, initial metal concentration, and temperature of various adsorbents toward the  Ni(II) particles to be examined. A documented analysis of reputed published papers revealed that industrial solid waste products, natural materials, and biosorbents have extraordinary Ni(II) adsorption ability from wastewater.

Keywords

Main Subjects


[1] Abd A.H., Hameed E., Eweda W.E., Abou-Taleb K.A.A., Mira H.I., Biosorption of Uranium and Heavy Metals Using Some Local Fungi Isolated from Phosphatic Fertilizers, Ann. Agric. Sci., 60: 1–7 (2015).
[2] Aji, Mahardika Prasetya et al., Removal of Heavy Metal Nickel-Ions from Wastewaters Using Carbon Nanodots from Frying Oil, Procedia Eng., 170: m36–40 (2017).
[3] Omar K., Ikram M., Hamza L., Mouna N., Abed M., Mohamed Lyamine C., Equilibrium, Mechanism and Mass Transfer Studies of Nickel(II) Adsorption by Sewage Sludge-Derived Activated Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 40(5): 1675-1682 (2021).
[4] Hemine K., Skwierawska A., Kernstein A., Kozłowska-Tylingo K., Cyclodextrin Polymers as Efficient Adsorbents for Removing Toxic Nonbiodegradable Pimavanserin from Pharmaceutical Wastewaters, Chemosphere, 250:126250 (2020).
[6] Oncel M.S., Muhcu A., Demirbas E., Kobya M., A Comparative Study of Chemical Precipitation and Electrocoagulation for Treatment of Coal Acid Drainage Wastewater, J. Environ. Chem. Eng., 1: 989–995 (2013).
[7] Cechinel M.A.P., Mayer D.A., Pozdniakova T.A., Mazur L.P., Boaventura R.A.R., de Souza A.A.U., de Souza S.M.A.G.U., Vilar V.J.P., Removal of Metal Ions from a Petrochemical Wastewater Using Brown Macro-Algae as Natural Cation-Exchangers, Chem. Eng. J., 286: 1–15 (2016).
[8] Zhang, L., Zeng, Y., Cheng, Z., Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review, J. Mol. Liq., 214:175–191 (2016).
[10] Huang Y., Wu D., Wang X., Huang W., Lawless D., Feng X., Removal of Heavy Metals from Water Using Polyvinylamine by Polymer-Enhanced Ultrafiltration and Flocculation, Sep. Purif. Technol., 158: 124–136 (2016).
[11] Gürel L., Altaş L., Büyükgüngör H., Removal of Lead from Wastewater Using Emulsion Liquid Membrane Technique, Environ. Eng. Sci., 22:411–420 (2005).
[12] Fu, F., Wang, Q., Removal of Heavy Metal Ions from Wastewaters: A Review, J Env. Manag., 92:407–418 (2011).
[13] Siddeeg S.M., A Novel Synthesis of TiO2/GO Nanocomposite for the Uptake of Pb2+ And Cd2+ from Wastewater, Mater. Res. Express, 7 :025038 (2020).
[14] Al-Zoubi H., Ibrahim K.A., Abu-Sbeih K.A., Removal of Heavy Metals from Wastewater by Economical Polymeric Collectors Using Dissolved Air Flotation Process, J. Water Process Eng., 8:19–27 (2015).
[16] Arjomandzadegan M., Rafiee P., Moraveji M.K., Tayeboon M., Efficacy Evaluation And Kinetic Study of Biosorption of Nickel and Zinc by Bacteria Isolated from Stressed Conditions in a Bubble Column., Asian Pac. J. Trop. Med., 7: 194–198 (2014).
[17] Shen L.C., Lo A., Nguyen X.T., Hankins N.P., Recovery of Heavy Metal Ions and Recycle of Removal Agent in the Polymer–Surfactant Aggregate Process., Sep. Purif. Technol., 159:169–176 (2016).
[18] Gabal E., Chatterjee S., Ahmed F.K., Abd-Elsalam K.A., Carbon Nanomaterial Applications in Air Pollution Remediation. in Carbon Nanomaterials for Agri-Food and Environmental Applications, Elsevier: Cambridge, MA, USA, 133–153 (2020).
[19] Fil B.A., Boncukcuoǧ lu R., Yilmaz A.E., Bayar S., Adsorption of Ni(II) on Ion Exchange Resin: Kinetics, Equilibrium and Thermodynamic Studies, 2012b. Korean J. Chem. Eng., 29: 1232–1238 (2012b).
[21] Srivastava S., Agrawal S.B., Mondal M.K., A Review on Progress of Heavy Metal Removal Using Adsorbents of Microbial and Plant Origin, Environ. Sci. Pollut. Res., 22(20):15386–15415 (2015).
[22] Wu H., Wei W., Xu C., Meng Y., Bai W., Yang W., Lin A., Polyethylene Glycol-Stabilized Nano Zero-Valent Iron Supported by Biochar for Highly Efficient Removal of Cr (VI), Ecotoxicol. Environ. Saf., 188: 109902 (2020).
[24] Khelifi O., Nacef M., Affoune A.M., Biosorption of Nickel(II) Ions from Aqueous Solutions by Using Chicken Eggshells as Low-Cost Biosorbent, Alger. J. Environ. Sci. Technol., 2:12-16 (2016).
[25] Bahadir, T., Bakan, G., Altas, L., Buyukgungor, H. The investigation of Lead Removal by Biosorption: An Application at Storage Battery Industry Wastewaters, Enzyme Microb. Technol., 41:98–102 (2007).
[26] Mallikarjunaiah S., Pattabhiramaiah, M., Metikurki B., Application of Nanotechnology in the Bioremediation of Heavy Metals and Wastewater Management. In Nanotechnology for Food, Agriculture, and Environment, Springer: Cham, Switzerland, 297–321 (2020).
[27] Montazer-Rahmati M.M., Rabbani P., Abdolali A., Keshtkar A.R., Kinetics and Equilibrium Studies on Biosorption of Cadmium, Lead, and Nickel Ions from Aqueous Solutions by Intact and Chemically Modified Brown Algae, J. Hazard. Mater., 185:401–407 (2011).
[28] Coman V., Robotin B., Ilea P., Nickel Recovery/Removal from Industrial Wastes: A Review, Resour. Conserv. Recycl., 73: 229–238 (2013).
[31] Prithviraj D., Deboleena K., Neelu N., Noor N., Aminur R., Balasaheb K., Abul M., Biosorption of Nickel by Lysinibacillus sp. BA2 Native to Bauxite Mine, Ecotoxicol. Environ. Saf. 107:260–268 (2014).
[32] Aloma, I., Martin-Lara, M.A., Rodriguez, I.L., Blazquez, G., Calero, M. Removal of Nickel (II) Ions from Aqueous Solutions by Biosorption on Sugarcane Bagasse, J. Taiwan Inst. Chem. Eng., 43: 275–281 (2012).
[33] Bhatnagar, A., Minocha, A.K. Biosorption Optimization of Nickel Removal from Water Using Punica Granatum Peel Waste, Colloids Surf., B 76:544–548 (2010).
[34] Kulkarni R.M., Shetty K.V., Srinikethan G., Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628), J. Taiwan Inst. Chem. Eng., 45:1628–1635 (2014).
[35] Choi H.Y., Bae J.H., Hasegawa Y., An S., Kim I.S., Lee H., Kim M., Thiol-Functionalized Cellulose Nanofiber Membranes for the Effective Adsorption of Heavy Metal Ions in Water, Carbohydr. Polym. 234: 115881 (2020).
[36] Lam Y.F., Lee L.Y., Chua S.J., Lim S.S., Gan S., Insights into the Equilibrium, Kinetic and Thermodynamics of Nickel Removal by Environmental Friendly Lansium Domesticum Peel Biosorbent, Ecotoxicol. Environ. Saf., 127: 61–70 (2016).
[38] Borba C.E., Guirardello R., Silva E.A., Veit M.T., Tavares C.R.G., Removal of Nickel(II) Ions from Aqueous Solution By Biosorption in a Fixed Bed Column: Experimental and Theoretical Breakthrough Curves, Biochem. Eng. J., 30:184–191 (2006).
[39] Zhang D., Xu W., Cai J., Cheng S.-Y., Ding W.P., Citric Acid-Incorporated Cellulose Nanofibrous Mats as Food Materials-Based Biosorbent for Removal of Hexavalent Chromium from Aqueous Solutions, Int. J.Biol. Macromol., 149: 459–466 (2020).
[40] Kao W.C., Huang C.C., Chang J.S., Biosorption of Nickel, Chromium and Zinc by MerP-Expressing Recombinant Escherichia Coli, J. Hazard. Mater., 158: 100–106 (2008).
[43] Islam, Md. Aminul, Md. Rabiul Awual, Michael J. Angove., A Review on Nickel(II) Adsorption in Single and Binary Component Systems and Future Path, J. Environ. Chem. Eng., 7(5): 103305 (2019).
[44] Sohail I., Bhatti I.A., Ashar A., Sarim F.M., Mohsin M., Naveed R., Yasir M., Iqbal M., Nazir A., Polyamidoamine (PAMAM) Dendrimers Synthesis, Characterization and Adsorptive Removal of Nickel Ions from Aqueous Solution, J. Mater. Res. Technol., 9: 498–506 (2020).
[45] Inyang M.I., Gao B., Yao Y., Xue Y., Zimmerman A., Mosa A., Cao X., A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal, Crit. Rev. Environ. Sci. Technol., 46: 406-433 (2015).
[46] Ajmal M Rao R.A.K., Ahmad R., Ahmad J., Adsorption Studies on Citrus Reticulata (Fruit Peel of Orange): Removal and Recovery of Ni(II) from Electroplating Wastewater, J. Hazard. Mater., 79: 117–131 (2000).
[47] Lakshmipathy R., Sarada N.C., Application of Watermelon Rind as Sorbent for Removal of Nickel and Cobalt from Aqueous Solution, Int. J. Miner. Process., 122: 63-65 (2013).
[48] Hussain M.S., Musharraf S.G., Bhanger M.I., Malik M.I., Salicylaldehyde Derivative of Nano-Chitosan as an Efficient Adsorbent for Lead (II), Copper (II), and Cadmium (II) Ions, Int. J. Biol. Macromol., 147: 643-652 (2020).
[49] Oliveira E.A., Montaner S.F., Andrade A.D., Nobrega J.A., Rollemberg M.C., Equilibrium Studies for the Sorption of Chromium and Nickel from Aqueous Solutions Using Raw Rice Bran, Process Biochem, 40: 3485–3490 (2005).
[51] Bulut Y., Tez Z., Adsorption Studies on Ground Shells of Hazelnut and Almond, J. Hazard Mater., 149:35–41 (2007).
[52] Malkoc E., Nuhoglu Y., Investigations of Nickel(II) Removal from Aqueous Solutions Using Tea Factory Waste, J. Hazard Mater., 127:120–128 (2005).
[53] Khalil T.E., Elhusseiny A.F., El-dissouky A., Ibrahim N.M., Functionalized Chitosan Nanocomposites for Removal of Toxic Cr (VI) from Aqueous Solution, React. Funct. Polym., 146:104407 (2020).
[54] Sharma P., Kumari P., Srivastava M.M., Srivastava S., Ternary Biosorption Studies of Cd(II), Cr(III) and Ni(II) on Shelled Moringa Oleifera Seeds, Bioresour Technol, 98: 474-477 (2007).
[55] Prasad M.N.V., Freitas H., Removal of Toxic Metals from Solution by Leaf, Stem and Root Phytomass of Quercus Ilex L. (Holly Oak), Environ Pollut, 110: 277–283 (2000).
[56] Iqbal M., Saeed A., Akhtar N., Petiolar Felt-Sheath of Palm: A New Biosorbent for the Removal of Heavy Metals from Contaminated Water, Bioresour Technol., 81: 151–153 (2002).
[58] Shukla S.S., Yu L.J., Dorris K., Shukla A., Removal of Nickel from Aqueous Solutions by Sawdust, J. Hazard Mater, 121: 243–246 (2005).
[60] Aranda-García, E., and E. Cristiani-Urbina. Kinetic, Equilibrium, and Thermodynamic Analyses of Ni(II) Biosorption from Aqueous Solution by Acorn Shell of Quercus Crassipes, Water, Air, Soil Pollut., 229(4): (2018).
[64] Vamvakidis K., Kostitsi T.-M., Makridis A., Dendrinou-Samara C., Diverse Surface Chemistry of Cobalt Ferrite Nanoparticles to Optimize Copper (II) Removal from Aqueous Media, Materials, 13: 1537 (2020).
[65] Gaballah I., Goy D., Allain E., Kilbertus G., Thauront J., Recovery of Copper Through Decontamination of Synthetic Solutions Using Modified Barks, Met Metall Trans B, 28: 13-23 (1997).
[66] Wang P., Shen T., Li X., Tang Y., Li Y., Magnetic Mesoporous Calcium Carbonate-Based Nanocomposites for the Removal of Toxic Pb (II) and Cd (II) Ions from Water, ACS Appl. Nano Mater., 3: 1272-1281 (2020).
[67] Shukla S.R., Pai R.S., STKE: Adsorption of Cu(II), Ni(II) and Zn(II) on Dye Loaded Groundnut Shells And Sawdust, Sep. Purif. Technol., 43:1–8 (2005).
[68] Sousa F.W., Oliveira A.G., Ribeiro J.P., Rosa M.F., Keukeleire D., Nascimento R.F., Green Coconut Shells Applied as Adsorbent for Removal of Toxic Metal Ions Using Fixed-Bed Column Technology, J. Environ Manag., 91: 1634-1640 (2010).
[69] Venkata Ramana D.K., Reddy H.K.D., Yu J.S., Seshaiah K., Pigeon Peas Hulls Waste as Potential Adsorbent for Removal of Pb(II) and Ni(II) from Water, Chem. Eng. J., 197: 24–33 (2012).
[70] Marshall W.E., Johns M.M., Agricultural By-Products as Metal Adsorbents: Sorption Properties and Resistance to Mechanical Abrasion., J. Chem. Technol. Biotechnol., 66: 192–198 (1996).
[72] Namasivayam C., Kadirvelu K., Agricultural Solid Wastes for the Removal of Heavy Metals: Adsorption of Cu(II) by Coirpith Carbon, Chemosphere, 34: 377–399 (1997).
[73] Shukla S.R., Pai R.S., Adsorption of Cu(II), Ni(II) and Zn(II) on Modified Jute Fibres, Bioresour. Technol., 96: 1430–1438 (2005).
[74] Muthusamy P., Murugan S., Smitha M., Removal of Nickel Ion from Industrial Waste Water Using Maize Cob, ISCA Journal of Biological Sciences., 1: 7-11 (2012).
[76] Rao M., Parwate A.V., Bhole A.G., Removal of Cr6+ and Ni2+ from Aqueous Solution Using Bagasse and Fly Ash., Waste Manag, 22: 821–830 (2002).
[77] Panneerselvam P., Morad N., Tan K.A., Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel(II) from Aqueous Solution, J. Hazard Mater., 186: 160–168 (2011).
[78] Qi B.C., Aldrich C., Biosorption of Heavy Metals From Aqueous Solutions with Tobacco Dust, Bioresour Technol., 99: 5595–5601 (2008).
[79] Argun M.E., Dursun S., Ozdemir C., Karatas M., Heavy Metal Adsorption by Modified Oak Sawdust: Thermodynamics and Kinetics, J. Hazard. Mater. B., 141: 77–85 (2007).
[80] Sayago, Uriel Fernando Carreño et al., Estimation of Equilibrium Times and Maximum Capacity of Adsorption of Heavy Metals by E. Crassipes (Review), Environ. Monit. Assess., 192(2) (2020).
[81] Rafatullah M., Sulaiman O., Hashim R., Ahmad A., Adsorption of Copper (II), Chromium (III), Nickel (II) and Lead (II) Ions from Aqueous Solutions by Meranti Sawdust., J. Hazard Mater., 170: 969–977 (2009).
[82] Bulut Y., Tez Z., Removal of Heavy Metal Ions by Modified Sawdust of Walnut, Fresenius Environ. Bull., 12: 1499–1504 (2003).
[83] Ademiluyi F.T., Multiple Adsorption of Heavy Metal Ions in Aqueous Solution Using Activated Carbon from Nigerian Bamboo, I. J. Resear. Eng. Technol., 05(01): 164–169 (2016).
[84] Tahoon M.A. et al., Effective Heavy Metals Removal from Water Using Nanomaterials: A Review. Processes 8(6): 645 (2020).
[86] Alshammari M.Sh., Assessment of Sewage Water Treatment Using Grinded Bauxite Rock as a Robust and Low-Cost Adsorption, Journal of Chemistry, 2020:1–5 (2020).
[87] Soleimani M., Kaghazchi T., Agricultural Waste Conversion to Activated Carbon by Chemical Activation with Phosphoric Acid, Chem. Eng. Technol., 30(5): 649–654 (2007).
[88] Awual M.R., Islam A., Hasan M.M., Rahman M.M., Asiri A.M., Khaleque M.A., Sheikh M.C., Introducing an Alternate Conjugated Material for Enhanced Lead(II) Capturing from Wastewater, J. Clean. Prod., 224: 920–929 (2019).
[89] Jusoh A., Shiung L.S., Ali N., Noor M.J.M.M., A Simulation Study of the Removal Efficiency of Granular Activated Carbon on Cadmium and Lead, Desalination, 206:9-16 (2007).
[90] Kang K.C., Kim S.S., Choi J.W., Kwon S.H., Sorption of Cu2+ and Cd2+ onto Acid- and Base-Pretreated Granular Activated Carbon and Activated Carbon Fiber Samples, J. Ind. Eng. Chem., 14: 131-135 (2008).
[91] Park H.G., Kim T.W., Chae M.Y., Yoo I.K., Activated Carbon-Containing Alginate Adsorbent for the Simultaneous Removal of Heavy Metals and Toxic Organics, Process Biochem., 42: 1371-1377 (2007).
[92] Pyrzynska K., Removal of Cadmium from Wastewaters with Low-Cost Adsorbents, J. Environ., Chem. Eng., 7: 02795 (2019).
[93] Üçer A., Uyanik A., Aygün S.F., Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) Ions by Tannic Acid Immobilised Activated Carbon, Sep. Purif. Technol., 47: 113-118 (2006).
[94] Yanagisawa H., Matsumoto Y., Machida M., Adsorption of Zn(II) and Cd(II) Ions onto Magnesium and Activated Carbon Composite in Aqueous Solution, Appl. Surf. Sci., 256:1619-1623 (2010).
[95] Ahn C.K., Park D., Woo S.H., Park J.M., Removal of Cationic Heavy Metal from Aqueous Solution by Activated Carbon Impregnated with Anionic Surfactants, J. Hazard. Mater., 164: 1130-1136 (2009).
[96] Ademiluyi F. T., Gumus R., Adeniji S.M., Jasem O.I., Effect of Process Conditions on the Characterization of Activated Carbon from Waste Nigerian Bamboo, Journal of Nigerian Society of Chemical Engineers, 24:83–94 (2009).
[99] Wilson W., Yang H., Seo C.W., Marshall W.E., Select Metal Adsorption by Activated Carbon Made from Peanut Shells, Bioresour Technol., 97: 2266–2270 (2006).
[100] Demirbas E, KobyaM, Oncel S, Sencan S, Removal of Ni(II) from Aqueous Solution by Adsorption onto Hazelnut Shell Activated Carbon: Equilibrium Studies, Bioresour Technol., 84: 291–293 (2002).
[101] Awual M.R., Hasan M.M., Asiri A.M., Rahman M.M., Cleaning the Arsenic(V) Contaminated Water for Safe-Guarding the Public Health Using Novel Composite Material, Compos. Part B-Eng. ,171: 294-301 (2019).
[102] Johns M.M., Marshall W.E., Toles C.A., Agricultural by-Products as Granular Activated Carbons for Adsorbing Dissolved Metals and Organics, J. Chem. Technol. Biotechnol., 71:131–140 (1998).
[103] Kadirvelu K, Namasivayam C, Agricutural By-Product as Metal Adsorbent: Sorption of Lead(II) from Aqueous Solution onto Coirpith Carbon, Environ Technol., 21:1091–1097 (2000).
[104] Kadirvelu K., Kavipriya M., Karthika C., Radhika M., Vennilamani N., Pattabhi S., Utilization of Various Agricultural Wastes for Activated Carbon Preparation and Application for the Removal of Dyes and Metal Ions from Aqueous Solutions, Bioresour. Technol., 87: 129–132 (2003).
[105] Ratan, Jatinder Kumar, Manjeet Kaur, and Bharadwaj Adiraju. Synthesis of Activated Carbon from Agricultural Waste Using a Simple Method: Characterization, Parametric and Isotherms Study. Mater. Today: Proc., 5(2): 3334–3345 (2018).
[107] Chen J.M., Hao O.J., Microbial Chromium (VI) Reduction, Environ Sci Technol., 28:219–251 (1998).
[108] Apiratikul R., Pavasant P., Batch and Column Studies of Biosorption of Heavy Metals by Caulerpa Lentillifera, Bioresour. Technol., 99: 2766-2777 (2008).
[110] Qari H.A., Hassan I.A., Removal of Pollutants from Waste Water Using Dunaliella Algae, Biomed Pharmacol J., 7:147–151 (2014).
[111] Romera E., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A., Comparative Study of Biosorption of Heavy Metals Using Different Types of Algae, Bioresour Technol., 98: 3344–3353 (2007).
[113] Vijayaraghavan K., Balasubramanian R., A Comparative Evaluation of Sorbents for the Treatment of Complex Metal-Bearing Laboratory Wastewaters, J. Environ. Chem. Eng., 1: 473–479 (2013).
[114] K. Vijayaraghavan, Umid Man Joshi, Seralathan Kamala-Kannan, An Attempt to Develop Seaweed-Based Treatment Technology for the Remediation of Complex Metal-Bearing Laboratory Wastewaters, Ecological Engineering, 47: 278– 283 (2012).
[116] Esmaeili A., Beirami P., Ghasemi S., Evaluation of the Marine Algae Gracilaria and Its Activated Carbon for the Adsorption of Ni(II) from Wastewater, E-J. Chem., 8(4):1512-1521 (2011).
[117] Özer A., Gürbüz G., Çalimli A., Körbahti B.K., Investigation of Nickel(II) Biosorption on Enteromorpha Prolifera: Optimization Using Response Surface Analysis, J Hazard Mater., 152: 778–788 (2008).
[118] Awual M.R., Novel Conjugated Hybrid Material for Efficient Lead(II) Capturing from Contaminated Wastewater, Mater. Sci. Eng.: C., 101: 686–695 (2019).
[119] Chakraborty, Rupa et al. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review, Int. J. Environ. Anal. Chem., 1–38 (2020).
[120] Cochrane W.W., Farm Prices: Myth and Reality, St Paul. University of Minnesota Press (1958).
[121] Akthar M.N., SivaramaSastry K., Mohan P.M., Mechanism of Metal Ion Biosorption by Fungal Biomass, Biometals, 9:21–28 (1996).
[122] Kapoor A., Viraraghavan T., Heavy metal Biosorption Sites in Aspergillus Niger, Bioresour Technol., 61: 221–227 (1997).
[123] El-Sayed W.N., Elwakeel K.Z., Shahat A., Awual M.R., Investigation of Novel Nanomaterial for the Removal of Toxic Substances from Contaminated Water, RSC Adv., 9: 14167–14175 (2019).
[124] López Errasquín E., Vázquez C., Tolerance and Uptake of Heavy Metals by Trichoderma Atroviride Isolated from Sludge, Chemosphere, 50: 137-143 (2003).
[125] Zafar S., Aqil F., Ahmad I., Metal tolerance and Biosorption Potential of Filamentous Fungi Isolated from Metal Contaminated Agricultural Soil, Bioresour Technol., 98: 2557-2561 (2007).
[126] Liu D., et al., Fast and High Adsorption of Ni (II) on Vermiculite-Based Nanoscale Hydrated Zirconium Oxides, Chem. Eng. J., 360: 1150-1157 (2019).
[127] Iskandar N.L., Zainudin N.A., Tan S.G., Tolerance and Biosorption of Copper (Cu) and Lead (Pb) by Filamentous Fungi Isolated from a Freshwater Ecosystem, J Environ Sci (China), 23:824-830 (2011).
[129] Siddiquee S., Aishah S.N., Azad S.A., Shafawati S.N., Naher L., Tolerance and Biosorption Capacity of Zn2+, Pb2+, Ni2+ and Cu2+ by Filamentous Fungi Trichoderma Harzianum, T. Aureoviride and T. Virens, Adv Biosci Biotechnol., 4: 570-583 (2013).
[130] Siddiquee, Rovina, Al Azad, Naher, Suryani, Chaikaew, Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review, J Microb Biochem Technol., 7: 6 (2015).
[131] Dilek F.B., Erbay A., Yetis U., Ni(II) Biosorption  by Polyporous Versicolor., Process Biochem., 37: 723–726 (2002).
[133] Filipovic K.Z., Sipos L., Briski F., Biosorption of Chromium, Copper, Nickel and Zinc Ions onto Fungal Pellets of Aspergillus Niger from Aqueous Solutions, Food Technol. Biotechnol., 38: 211-216 (2000).
[134] Yan G., Viraraghavan T., Heavy-Metal Removal from Aqueous Solution by Fungus Mucor Rouxii., Water Res., 37: 4486-4496 (2003).
[136] Amini M., Younesi H., Bahramifar N., Biosorption of Nickel (II) from Aqueous Solution by Aspergillus Niger: Response Surface Methodology and Isotherm Study, Chemosphere, 75(11): 1483–1491 (2009).
[138] Axtell NR, Sternberg SP, Claussen K, Lead and nickel removal using Microspora and Lemna Minor. Bioresour Technol. 89:41–48 (2003).
[140] Miretzky P, Saralegui A, Fernandez Cirelli A, Simultaneous heavy metal removal mechanism by Dead Macrophytes. Chemosphere. 62:247–254 (2006).
[141] Alalwan, Hayder A., Mohammed A. Kadhom, and Alaa H. Alminshid. Removal of Heavy Metals from Wastewater Using Agricultural Byproducts. J. Water Supply: Res. Technol.—AQUA. 69(2): 99–112 (2020).
[142] Chorom M, Parnian A, Jaafarzadeh N, Nickel Removal by the Aquatic Plant (Ceratophyllum Demersum L)., Int. J. Environ Sci Dev., 4:1-4 (2012).
[144] Matheri, Anthony Njuguna et al. “Influence of Pyrolyzed Sludge Use as an Adsorbent in Removal of Selected Trace Metals from Wastewater Treatmen”t, Case Studies in Chemical and Environmental Engineering, 100018 (2020).
[145] Devi P., Saroha A.K., Improvement in Performance of Sludge-Based Adsorbents by Controlling Key Parameters by Activation/modification: A Critical Review, Crit. Rev. Environ. Sci. Technol., 46(21-22): 1704–1743 (2016).
[146] Devi P., Saroha A.K., Utilization of Sludge Based Adsorbents for the Removal of Various Pollutants: A Review. Sci. Total Environ., 578:16–33 (2017).