The Efficiency of Physical Equilibrium and Non-Equilibrium Models for Simulating Contaminant Transport in Laboratory-Scale

Document Type : Research Article

Authors

1 Department of Water Sciences and Engineering, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

2 Department of Water Engineering, University of Tabriz, Tabriz, I.R. IRAN

Abstract

In order to better management of contaminants in porous media, it is essential to recognize their transport behavior using appropriate models. In this research, Convection-Dispersion Equation (CDE) and Mobile-ImMobile (MIM), as physical equilibrium and non-equilibrium models, respectively, were used to simulate the bromide transport (as a conservative contaminant) through undisturbed and saturated clay loam and sandy loam soil columns (diameter of 10 and height of 40 cm). To simulate the transport, CXTFIT2.1 software, in which the CDE and the MIM models are included, was used. The values of mass transfer coefficient (ω<100) and mobile water fraction (β<1) as an indicator for determining the equilibrium and non-equilibrium indicated that bromide transport behavior within these columns was anomalous or non-Fickian transport. Hence, non-equilibrium and the MIM model are suitable and more efficient than the Fickian-based CDE. The fitted breakthrough curves (BTCs) and the larger determination coefficient (R2) and the smaller Root Mean Square Error (RMSE) values of the MIM model compared to those of the CDE confirmed the effectiveness of the MIM model in simulating bromide transport in the clay loam and sandy loam soil columns.

Keywords

Main Subjects


[1] Jury W.A., Simulation of Solute Transport Using a Transfer Function Model, Water Resour. Res., 18: 363-368 (1982).
[2] Huang G., Huang Q., Zhan H., Chen J., Xiong Y., Feng S., Modeling Contaminant Transport in Homogeneous Porous Media with Fractional Advection Dispersion Equation, Sci. China Ser. D Earth Sci., 48: 295-302 (2005).
[3] Berkowitz B., Emmanuel S., Scher H., Non-Fickian Transport and Multiple-Rate Mass Transfer in Porous Media, Water Resour. Res., 44: 1-16 (2008).
[4] Berkowitz B., Scher H., On Characterization of Anomalous Dispersion in Porous Media, Water Resour. Res., 31: 1461–1466 (1995).
[5] Pang L., Close M., Schneider D., Stanton G., Effect of Pore-water Velocity on Chemical Non-Equilibrium Transport of Cd, Zn, and Pb in Alluvial Gravel Columns, Contam. Hydrol., 57: 241-258 (2002).
[6] Jury W.A., Roth K., "Transfer Function and Solute Movement through Soil: Theory and Applications", Birkhauser Boston, Cambrige, Mass, (1990).
[7] Berkowitz B., Scher H., Exploring the Nature of Non-Fickian Transport in Laboratory Experiments, Adv. Water Res., 32: 750-755 (2008).
[8] Benson D.A., Wheatcraft S.W., Meerschaert M.M., Application of a Fractional Advection-Dispersion Equation. Water Resour Res., 36: 1403-1412 (2000a).
[9] Benson D.A., Wheatcraft S.W., Meerschaert M.M., The Fractional-Order Governing Equation of Levy Motion, Water Resour. Res., 36: 1413-1423 (2000b).
[10] Bond W.J., Wierenga P.J., Immobile Water During Solute Transport in Unsaturated Sand Columns, Water Resour. Res., 26: 2475-2481 (1990).
[11] Goldsztein G.H., Solute Transport in Porous Media. Media with Capillaries as Voids. SIAM J. Appl. Math., 68: 1203-1222 (2008).
[12] Lamberti G., Hauer F.R., "Methods in Stream Ecology: Vol. 2: Ecosystem Function". Academic Press (2017).
[13] Toride N., Inoue M., Leij F., Hydrodynamic Dispersion in an Unsaturated Dune Sand, Soil Sci. Soc. Am. J., 67: 703-712 (2003).
[14] Gao G., Zhan H., Feng S., Huang G., Mao X., Comparison of Alternative Models for Simulating Anomalous Solute Transport in a Large Heterogeneous Soil Column, J. Hydrol., 377: 391-404 (2009).
[15] Arora B., Mohanty B.P., McGuire J.T., Inverse Estimation of Parameters for Multidomain Flow Models in Soil Columns with Different Macropore Densities, Water Resour. Res., 47: 4 (2011).
[16] Padilla I.Y., Yeh T.C.J., Conklin M.H., The Effect of Water Content on Solute Transport in Unsaturated Porous Media. Water Resour. Res., 35: 3303-3313 (1999).
[17] Shahmohammadi-Kalalagh S., Beyrami H., Modeling Bromide Transport in Undisturbed Soil Columns with the Continuous Time Random Walk. Geotech. Geol. Eng., 33: 1511-1518 (2015).
[20] Moradi G., Mehdinejadiani B., An Experimental Study on Scale Dependency of Fractional Dispersion Coefficient. Arab. J. Geosci., 13: 409 (2020).
[21] Bouredji H., Bendjaballah-Lalaoui N., Rennane S., Merzougui A., Predicting Solute Transport Parameters in Saturated Porous Media Using Hybrid Algorithm. Iran. J. Chem. Chem. Eng., (IJCCE) 40(3): 945-954 (2021).
[22] Sharma P.K., Agarwal P., Mehdinejadiani B., Study on Non-Fickian Behavior for Solute Transport Through Porous Media. ISH J. Hydraul. Eng., 1-9 (2020).
[23] Shahmohammadi-Kalalagh S., Modeling Contaminant Transport in Saturated Soil Column with the Continuous Time Random Walk. J. Porous Media, 18: 1-6 (2015).
[24] Poulsen T.G., Moldrup P., de Jonge L.W., Komatsu T., Colloid and Bromide Transport in Undisturbed Soil Columns. Vadose Zone J., 5: 649-656 (2006).
[25] Asghari S., Abbasi F., Neyshabouri M.R., Effects of Soil Conditioners on Physical Quality and Bromide Transport Properties in a Sandy Loam Soil. Biosyst. Eng., 109: 90-97 (2011).
[26] Safadoust A., Mahboubi A., Mosaddeghi M.R., Gharabaghi B., Unc A., Voroney P., Heydari A., Effect of Regenerated Soil Structure on Unsaturated Transport of Escherichia Coli and Bromide, J. Hydrol., 430–431: 80–90 (2012).
[27] Safadoust A., Amiri Khaboushan E., Mahboubi A.A., Gharabaghi B., Mosaddeghi M.R., Ahrens B., Hassanpour Y., Comparison of Three Models Describing Bromide Transport Affected by Different Soil Structure Types, Arch. Agron. Soil Sci., 62: 674-687 (2016).
[28] Bear J., "Dynamics of Fluids in Porous Media", Dover Publications, New York, (2013).
[29] Toride N., Leij F.J., van Genuchten M.Th., "The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments". Version 2.1, Research Rep. 137. U.S. Salinity Lab, Riverside, CA, USA, (1999).
[30] Ersahin S., Papendick R.I., Smith J.L., Keller C.K., Manoranjan v.s., Macropore Transport of Bromide as Influenced by Soil Structure Differences, Geoderma, 108: 207-223 (2002).
[31] Lee J., Horton R., Noborio K., Jaynes D.B., Characterization of Preferential Flow in Undisturbed Structured Soil Columns Using a Vertical TDR probe, J. Contam. Hydrol., 51: 131-14 (2001).
[32] Hillel D., "Introduction to Soil Physics". Elsevier, (2013).
[33] Perfect E., Sukop M.C., Haszler E.R., Prediction of Dispersivity for Undisturbed Soil Columns from Water Retention Parameters, Soil Sci. Soc. Am. J., 66: 696-701 (2002).
[34] Pang L., Close M.E., Non-Equilibrium Transport of Cd in Alluvial Gravels, J. Contam. Hydrol., 36: 185-206 (1999).