Preparation of Permanent Red 24 Nanoparticle by Oil in Water Microemulsion

Document Type : Research Article

Authors

1 Department of Applied Chemistry, Qom Branch, Islamic Azad University, Qom, I.R. IRAN

2 Young Researchers and Elites Club, Qom Branch, Islamic Azad University, Qom, I.R. IRAN

10.30492/ijcce.2020.76135.2845

Abstract

Permanent red 24 (1-(2,4-Dinitro-phenylazo)-naphthalen-2-ol) is a family member of azo dyes. Azo dyes have so many industrial applications. In this study, permanent red 24 nano pigments were prepared by microemulsion as a novel method. The effects of different experimental parameters for nano pigment preparation were studied. The investigated parameter include surfactant nature, solvent, surfactant, cosurfactant, and pigment percentage in microemulsion formulation. Optimal formulation determined for nano pigment preparation. Performing the process under the optimal formulation leads to the production of nano pigment with an average size of about 85 nm. The nano pigment was characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The DLS measurements confirm TEM analysis.

Keywords

Main Subjects


[2] Niu G.D., Li N., Wang L.D., Li W.Z., Qiu Y., Combined Post-Modification of Iodide Ligands and Wide Band Gap Zns in Quantum Dot Sensitized Solar Cells, Phys. Chem. Chem. Phys., 16: 18327-18332 (2014).
[3] Sun Q., Chen Q., Blackstock D., Chen W., Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly, Chem. Eur. J., 9: 8554-8561 (2015).
[4] Satam M. A., Raut  R. K., Telore R. D., Sekar  N., Fluorescent Acid Azo Dyes from 3-(1,3-benzothiazol-2-yl)naphthalen-2-ol Andcomparison with 2-Naphthol Analogs, Dyes Pigments, 97: 32-42 (2013).
[5] Jinjing Q., Bingtao T., Benzhi J., Yuanji X., Shufen  Z., Stable Diazonium Salts of Weakly Basic Amines Convenient Reagents for Synthesis of Disperse Azo Dyes, Dyes Pigments, 136: 63-69 (2017).
[6] Herz E., Ow H., Bonner D., Burnsa A., Wiesner U., Dye Structure Optical Property Correlations In Near-Infrared Fluorescent Core-Shell Silica Nanoparticles, J. Mater. Chem., 19: 6341-6347 (2009).
[7] Lee J-H., Jun Y-w., Yeon S-I., Shin J-S., CheonJ., Dual-Mode Nanoparticle Probes for High-Performance Magnetic Resonance and Fluorescence Imaging of Neuroblastoma, Angew. Chem., 118: 8340-8342 (2006).
[8] Bilgili E., Hamey R., Scarlet B., Poco J.F., Production of Pigment Nanoparticles Using a Wet Stirred Mill with Polymeric Media, China Particuligy, 2: 93-100 (2004).
[9] Ogihara H., Okagaki J., Saji T., Facile Fabrication of Colored Superhydrophobic Coatings by Spraying a Pigment Nanoparticle Suspension, Langmuir, 27: 9069-9072 (2011).
[10] Tillotson T.M., Gash, A.E. Simpson, R.L. Hrubesh L.W., Satcher J.H., Poco J.F., Nanostructured Energetic Materials Using Sol-Gel Methodologies, Non-Cryst. Solids, 285: 338-345 (2001).
[11] Ismail Ab, R., Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites, J Nanomater., 2012: 1-15 (2012).
[12] Müller R.H., Mäder K., Gohla S., Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery - A Review of the State of the Art, Eur. J. Pharm. Biopharm., 50: 161-177 (2000).
[13] Tiunov I.A., Tiunov I.A., Gorbachevskyy M.V., Kopitsyn D.S., Kotelev M.S., Ivanov E.V., Vinokurov V. A.,  Novikov A.A., Synthesis of Large Uniform Gold and Core–Shell Gold–Silver Nanoparticles: Effect of Temperature Control, Russ. J. Phys. Chem. A, 90: 152-157 (2016).
[14] Tappan B.C., Brill T.B., Thermal Decomposition of Energetic Materials 86. Cryogel Synthesis of Nanocrystalline CL-20 Coated with Cured Nitrocellulose, Propellants Explos. Pyrotech., 28: 223-230 (2003).
[15] Yongxu Z.H., Dabin L., Chunxu L., Preparation and Characterization of Reticular Nano-HMX, Propellants Explos. Pyrotech., 30: 438-441 (2005).
[16] Teng Lam U., Yoganathan R., Carr A.G., Mammucari R., Foster N.R., Encapsulation of Superparamagnetic Iron Oxide Nanoparticles by the Supercritical Antisolvent Process, Aust. J. Chem., 65: 40-44 (2011).
[17] Steitz B., Krauss F., Rousseau S., Hofmann  H., Petri-Fink a Positional Control of Superparamagnetic Iron Oxide Nanoparticles in Silica Beads, Adv. Eng. Mater., 9: 375-380 (2007).
[18] Solla-Gullón J., Vidal-Iglesias F.J., Montiel V., Aldaz A., Electrochemical Characterization of Platinum–Ruthenium Nanoparticles Prepared by Water-In-Oil Microemulsion, Electrochimica Acta, 49: 5079-5088 (2004).
[20] Ghadami A., Ghadam J., Idrees M., Characterization of CaCO3 Nanoparticles Synthesized by Reverse Microemulsion Technique in Different Concentrations of Surfactants, Iran. J. Chem. Chem. Eng. (IJCCE), 4: 27-35 (2013).
[21] Esmaeili N., Kazemian H., Bastani D., Synthesis of Nano Particles of LTA Zeolite by Means of Microemulsion Technique, Iran. J. Chem. Chem. Eng. (IJCCE), 30: 1-8 (2011). 
[22] Salabat A., Rahmati Far M., Solvent Effect on the Size of Platinum Nanoparticle Synthesized in Microemulsion Systems, Russ. J. Phys. Chem. A, 86: 881-883 (2012).
[23] Dodoo D., Leoni M., Scardi P., Microemulsion Synthesis of Copper Oxide Nanorod-Like Structures, Mol. Cryst. Liq. Cryst., 555: 17-31(2012).
[24] Lee H.M., Choi H.J., Synthesis and Characterization of Polyaniline -Na+- Montmorillonite Nanocompositeby Microemulsion Polymerization, Mol. Cryst. Liq. Cryst., 463: 221-225 (2007).  
[25] Xua W., Shena Y., Xiea A., Huanga F., Synthesis and Characterization of PbS nanorods in W/O Microemulsion System, Russ. J. Phys. Chem. A, 83: 2297-2231 (2009).
[26] Bayat Y., Zarandi  M., Zarei  M.A., Soleyman R., Zeynali  V., A Novel Approach For Preparation of CL-20 Nanoparticles by Microemulsion Method, J. Mol. Liq., 193: 83-86 (2014).
[27] Bayat Y., Zarandi M., Preparation of Hexanitrohexaazaisowurtzitane (HNIW) Nano Particle by Normal Microemulsion Based Nonionic Surfactant, Int. J. Nanosci. Nanotechnol., 9: 115-120 (2013).