The efficiency of Chitosan Extracted from Persian Gulf Shrimp Shell in Removal of Penicillin G Antibiotic from Aqueous Environment

Document Type: Research Article


1 Department of Environmental Health Engineering, Student Research Committee, Birjand University of Medical Sciences, Birjand, I.R. IRAN

2 Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, I.R. IRAN



Antibiotics are discharged into the aqueous environment in various ways. The disposal of wastewater containing antibiotics creates serious environmental problems. Today, given the necessity of using natural materials, natural-based adsorbents have been taken into consideration. Chitosan is a natural polysaccharide derived from the crust of crustaceans of the sea with many useful aspects such as hydrophilicity, biodegradability, and biocompatibility. In this study, after the preparation of chitosan, the effect of various parameters such as pH (3-11), adsorbent dosage (0.25-1g/L), penicillin G concentration (10-70 mg/L), and contact time (5-90 min) in the removal of antibiotic was investigated. Structural characteristics of synthesized chitosan were determined by Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). Also, the isotherm, thermodynamics, and kinetics of the adsorption process were studied. The results of this study showed that the maximum adsorption capacity of chitosan in optimum condition (pH=7, adsorbent dose: 0.25 g/L, the concentration of antibiotics: 70 mg/L, and contact time: 10 min) was 101.44 mg/g. SEM image showed that the size of chitosan was ranging from 700 nm to 5 microns. The results of XRD analysis showed the successful synthesis of chitosan. Experimental data indicate that the results are consistent with the Langmuir isotherm model and that the adsorption process was followed by a pseudo-second-order model. According to the results of thermodynamic studies, the standard entropy variations (∆S) were 20.68 (J/mol k) and standard enthalpy changes (∆H) were 5.69 kJ/mol and standard Gibbs free energy (∆G) values were negative and respectively indicates that adsorption process of penicillin G by chitosan is spontaneous and endothermic.


Main Subjects

[1] Gagnon C., Lajeunesse A., Cejka P., Gagné F., Hausler R., Degradation of Selected Acidic and Neutral Pharmaceutical Products in A Primary-Treated Wastewater by Disinfection Processes, Ozone- Sci Eng, 30(5): 387-392 (2008).
[2] Dirany A., Sirés I., Oturan N., Oturan M.A., Electrochemical Abatement of the Antibiotic Sulfamethoxazole from Water, Chemosphere, 81(5): 594-602 (2010).
[4] Lin A.Y.-C., Lin Ch.-F., Chiou J.-M., Hong A., O3 and O3/H2O2 Treatment of Sulfonamide and Macrolide Antibiotics in Wastewater, J. Hazard. Mater., 171(1-3): 452-458 (2009).
[5] Yang C., Cussler E., Reactive Extraction of Penicillin G in Hollow‐Fiber and Hollow‐Fiber Fabric Modules, Biotechnol Bioeng, 69(1): 66-73 (2000).
[6] Kheirolomoom A., Kazemi-Vaysari A., Ardjmand M., Baradar-Khoshfetrat A., The Combined Effects
of pH and Temperature on Penicillin G Decomposition and its Stability Modeling
, Process Biochem,
35(1-2): 205-211 (1999).
[7] Bi P., Dong H., Guo Q., Separation And Purification of Penicillin G from Fermentation Broth by Solvent Sublation, Sep. Purif. Technol., 65(2): 228-231 (2009).
[8] Bush K., Jacoby G.A., Medeiros A.A., A functional Classification Scheme for Beta-Lactamases and Its Correlation with Molecular Structure, Antimicrob Agents Chemother, 39(6): 1211-1233 (1995).
[9] Rahmani A., Mehralipour J., Shabanlo A., Majidi S., Efficiency of Ciprofloxacin Removal by Ozonation Process with Calcium Peroxide from Aqueous Solutions, J Qazvin Univ Med Sci, 2(19): 55-64 (2015).
[10] Elmolla E.S., Chaudhuri M., Degradation of the Antibiotics Amoxicillin, Ampicillin and Cloxacillin in Aqueous Solution by the Photo-Fenton Process, J. Hazard. Mater, 172(2-3): 1476-1481 (2009).
[11] Jeong J., Song W., Cooper W.J., Jung J., Greaves J., Degradation of Tetracycline Antibiotics: Mechanisms and Kinetic Studies for Advanced Oxidation/Reduction Processes, Chemosphere, 78(5): 533-540 (2010).
[12] Aksu Z., Tunç Ö., Application of Biosorption for Penicillin G Removal: Comparison with Activated Carbon, Process Biochem, 40(2): 831-847 (2005).
[13] Richardson M.L., Bowron J.M., The Fate of Pharmaceutical Chemicals in the Aquatic Environment,
J. Pharm. Pharmacol., 37(1): 1-12 (1985).
 [14] Rivera-Utrilla J., Prados-Joya G., M.Sánchez-Polo M., Ferro-García M.A., Bautista-Toledo I., Removal of Nitroimidazole Antibiotics from Aqueous Solution by Adsorption/Bioadsorption on Activated Carbon,
J. Hazard. Mater, 170(1): 298-305 (2009).
[15] Ay F., Kargi F., Advanced Oxidation of Amoxicillin by Fenton's Reagent Treatment, J. Hazard. Mater., 179(1-3): 622-627 (2010).
[17] Rozas O., Contreras D., AngélicaMondaca M., Pérez-Moya M., Mansilla H.D., Experimental Design of Fenton and Photo-Fenton Reactions for the Treatment of Ampicillin Solutions, J. Hazard. Mater., 177(1-3): 1025-1030 (2010).
[18] Crisafully R., Milhome M.A.L., Cavalcante R.M., Silveira E.R., De Keukeleire D., Nascimento R.F., Removal of Some Polycyclic Aromatic Hydrocarbons from Petrochemical Wastewater Using Low-Cost Adsorbents of Natural Origin, Bioresour Technol, 99(10): 4515-4519 (2008).
[19] Koyuncu I., Arikan O.A., Wiesner M.R., Rice C., Removal of Hormones and Antibiotics by Nanofiltration Membranes, J. Membrane. Sci., 309(1-2): 94-101 (2008).
[20] Choi K.-J., Son H.-J., Kim S.-H., Ionic Treatment for Removal of Sulfonamide and Tetracycline Classes of Antibiotic, Sci. Total. Environ., 387(1-3): 247-256 (2007).
[21] Wang S., Terdkiatburana T., Tadé M., Adsorption of Cu (II), Pb (II) and Humic Acid on Natural Zeolite Tuff in Single and Binary Systems, Sep. Purif. Technol, 62(1): P. 64-70 (2008).
[22] Han R., Ding D., Xu Y., Zou W., Wang Y., Li Y., Zou L., Use of Rice Husk for the Adsorption of Congo Red from Aqueous Solution in Column Mode, Bioresour Technol, 99(8): 2938-2946 (2008).
[23] Hajira Tahir, Muhammad Anas, Uroos Alam, Rukhsana Bibi Jamil, Masooda Qadri, Structural Modifications of Surfactant-Assisted Alumina and Their Effectiveness for The Removal of Dyes, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 47-60 (2018).
[24] Hu Z.-J., Wang N.-X., Tan J., Chen J.-Q., Zhong W.Y., Kinetic and Equilibrium of Cefradine Adsorption onto Peanut Husk, Desalin Water Treat, 37(1-3): 160-168 (2012).
[25] Wang C.-J., Li Z., Jiang W.-T., Adsorption of Ciprofloxacin on 2: 1 Dioctahedral Clay Minerals, Appl Clay Sci, 53(4): 723-728 (2011).
[26] Ötker H.M., Akmehmet-Balcıoğlu I., Adsorption and Degradation of Enrofloxacin, a Veterinary Antibiotic on Natural Zeolite, J. Hazard. Mater., 122(3): 251-258 (2005).
[27] Essington M., Lee J., Seo Y., Adsorption of Antibiotics by Montmorillonite and Kaolinite, Soil. Sci. Soc. Am. J, 74(5): 1577-1588 (2010).
[28] Al-Khalisy R.S., Al-Haidary A.M.A., Al-Dujaili A.H., Aqueous Phase Adsorption of Cephalexin onto Bentonite and Activated Carbon, Sep. Sci. Technol., 45(9): 1286-1294 (2010).
[29] Parolo M.E., Savini M.C., Vallés J.M., Maschini M.T., Avena M.J., Tetracycline Adsorption on Montmorillonite: pH and Ionic Strength Effects, Appl Clay Sci, 40(1-4): 179-186 (2008).
[30] Liao P., Zhan Z., Dai J., Wu X., Zhang W., Wang K., Yuan S., Adsorption of Tetracycline and Chloramphenicol in Aqueous Solutions by Bamboo Charcoal: A Batch and Fixed-Bed Column Study, Chem. Eng. J., 228: 496-505 (2013).
[32] Chiou M.-S., Li H.-Y., Equilibrium and Kinetic Modeling of Adsorption of Reactive Dye on Cross-Linked Chitosan Beads, J. Hazard. Mater., 93(2): 233-248 (2002).
[33] Mohammad Beigi S., Babapoor A., Maghsoodi V., Mousavi S.M., Rajabi N., Batch Equilibrium and Kinetics Studies of Cd (II) Ion Removal from Aqueous Solution Using Porous Chitosan Hydrogel Beads, Iran. J. Chem. Chem. Eng. (IJCCE), 28(3): 81-89 (2009).
[34] Mohanasrinivasan V., Mishra M., Paliwal J.S., Singh S.Kr., Selvarajan E., Suganthi V., Subathra Devi C., Studies on Heavy Metal Removal Efficiency and Antibacterial Activity of Chitosan Prepared from Shrimp Shell Waste, 3 Biotech, 4(2): 167-175 (2014).
[35] Shieh Y.-T., Yang Y.-F., Significant Improvements in Mechanical Property and Water Stability of Chitosan by Carbon Nanotubes, Eur. Polym. J., 42(12): 3162-3170 (2006).
[36] Boamah P.O., Huang Y., Hua M., Zhang Q., Wu J., Onumah J., Sam-Amoah L.K., Boamah P.O., Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives—A Mini-Review, Ecotoxicol. Environ. Saf., 116: 113-120 (2015).
[37] Islam M.M., Masum Sh.M., Mahbubur Rahman M., Islam M.A., Shaikh A.A., Roy S.K., Preparation of Chitosan from Shrimp Shell and Investigation of Its Properties, Int. J. Basic. Appl. Sci., 11(1): 116-130 (2011).
[38] Percot A., Viton C., Domard A., Optimization of Chitin Extraction from Shrimp Shells, Biomacromolecules, 4(1): 12-18 (2003).
[39] Zazouli M.A., Belarak D., Karimnezhad F., Khosravi F., Removal of Fluoride from Aqueous Solution by Using of Adsorption onto Modified Lemna Minor: Adsorption Isotherm and Kinetics Study, JMUMS, 23(109): 195-204 (2014).
[41] Kyzas G.Z., Kostoglou M., Lazaridis N.K., Copper and Chromium (VI) Removal by Chitosan Derivatives—Equilibrium and Kinetic Studies, Chem. Eng. J., 152(2-3): 440-448 (2009).
[42] Samiee Beyragh A., Varsei M., Meshkini M., Khodadadi Darban A., Gholami E., Kinetics and Adsorption Isotherms Study of Cyanide Removal from Gold Processing Wastewater Using Natural and Impregnated Zeolites, Iran. J. Chem. Chem. Eng. (IJCCE), 37(2): 139-149 (2018).
[43] Mahmoud M.E., Nabil G.M., El-Mallah M., Bassiouny H.I., Kimar S., Abdel-Fattah T.M., Kinetics, Isotherm, and Thermodynamic Studies of the Adsorption of Reactive Red 195 a Dye from Water by Modified Switchgrass Biochar Adsorbent, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 156-167 (2016).
[44] Dotto G.L. Pinto L.A.A., Adsorption of Food Dyes onto Chitosan: Optimization Process and Kinetic, Carbohyd Polym, 84(1): 231-238 (2011).
[45] Daraei P., Madaeni S.S., Salehi E., Ghaemi N., Sadeghi Ghari H., Khadivi M.A., Rostami E., Novel Thin Film Composite Membrane Fabricated by Mixed Matrix Nanoclay/Chitosan on PVDF Microfiltration Support: Preparation, Characterization and Performance in Dye Removal, J. Membrane. Sci., 436: 97-108 (2013).
[46] Günister E., Pestreli D., Ünlü G.H., Atıcı, O., Güngör N., Synthesis and Characterization of Chitosan-MMT Biocomposite Systems, Carbohyd Polym, 67(3): 358-365 (2007).
[47] Ghaemi M., Absalan G., Sheikhian L., Adsorption Characteristics of Titan Yellow and Congo Red
on COFe2O4 Magnetic Nanoparticles
, JICS, 11(6): 1759-1766 (2014).
[48] Zhang L., Song X., Liu X., Yang L., Pang F., Lv. J., Studies on The Removal of Tetracycline by Multi-Walled Carbon Nanotubes, Chem. Eng. J., 178: 26-33 (2011).
[49] Balarak D., Mahdavi Y., Maleki A., Daraei H., Sadeghi Sh., Studies on The Removal of Amoxicillin by Single-Walled Carbon Nanotubes, Br. J. Pharm. Res., 10(4): 1-9 (2016).
[50] Adriano W.S., Veredas V., Santana C.C., Gonçalves L.R.B., Adsorption of Amoxicillin on Chitosan Beads: Kinetics, Equilibrium and Validation of Finite Bath Models, Biochem. Eng. J., 27(2): 132-137 (2005).
[51] Yang W., Lu Y., Zheng F., Xue X., Li N., Liu D., Adsorption Behavior and Mechanisms of Norfloxacin onto Porous Resins and Carbon Nanotube, Chem. Eng. J., 179: 112-118 (2012).
[53] Ocampo-Pérez R., Rivera-Utrilla J., Gómez-Pacheco C., Sánchez-Polo M., López-Peñalver J.J., Kinetic Study of Tetracycline Adsorption on Sludge-Derived Adsorbents in Aqueous Phase, Chem. Eng. J., 213: 88-96 (2012).
[54] Balarak D., Mostafapour F.K., Joghataei A., Experimental and Kinetic Studies on Penicillin G Adsorption By Lemna Minor, Br. J. Pharm. Res., 9(5): 1-10 (2016).
[55] Ferdowsi R., Layali I., Khezri S.M., Treatment of Antibiotics From Wastewater By Adsorption Onto Low Adsorbent, (IJAPBS), 4(9): 44-50 (2015).
[56] Homem V., Alves A., Santos L., Amoxicillin Removal From Aqueous Matrices by Sorption with Almond Shell Ashes, Int. J. Environ. Anal. Chem., 90(14-15): 1063-1084 (2010).