A Sensitive SiO2@Fe3O4/GO Nanocomposite Modified Ionic Liquid Carbon Paste Electrode for the Determination of Cabergoline

Document Type: Research Article


1 Bam University of Medical Sciences, Bam, I.R. IRAN

2 NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, I.R. IRAN

3 University of Medical Sciences, Bam, I.R. IRAN

4 Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, I.R. IRAN



In this study, the initial report on determining cabergoline via nanostructure-adjusted ionic liquid carbon paste electrode with aqueous solutions is described. For this purpose, an original adjusted carbon paste electrode that uses SiO2@Fe3O4/GO nanocomposite and 1-methyl-3-butylimidazolium bromide as a binder (SiO2@Fe3O4/GO/CPILE) was designed. Cabergoline oxidation peak at SiO2@Fe3O4/GO/CPILE surface was 500 mV that was approximately 200 mV less compared to the oxidation potential pertaining to the CPE surface subjected to a similar state. Moreover, there was an increase in the peak current of approximately 3.0 times greater at SiO2@Fe3O4/GO/CPILE surface in comparison to that of the CPE. The relevant linear response range and detection limit were determined as 0.07–500.0 and 0.01 μM, correspondingly. The adjusted electrode was successful in determining cabergoline within real specimens entailing adequate results.


Main Subjects

[1] Chiba S., Numakawa T., Ninomiya M., Shin Yoon H., Kunugi H., Cabergoline, A Dopamine Receptor Agonist, Has an Antidepressant-Like Property and Enhances Brain-Derived Neurotrophic Factor Signaling, Psychopharmacology, 211: 291-301 (2010).
[2] Hasanpour F., Taei M., Banitaba S.H., Heidari M., Template Synthesis of Maghemite Nanoparticle in Carboxymethyl Cellulose and its Application for Electrochemical Cabergoline Sensing, Mater. Sci. Eng. C, 76: 88-93 (2017).
[3] Ogul H., Kaya S., Ogul Y., Transient Splenial Lesion of the Corpus Callosum after Cabergoline Treatment, World Neurosurg., 114: 257-258 (2018).
[4] Saad A.S., Aziz Mohamed K.A., Diosmin Versus Cabergoline for Prevention of Ovarian Hyperstimulation Syndrome, Middle East Fertil. Soc. J., 22: 206-210 (2017).
[6] A. Mogheiseh A., Mosavi Ghiri M.J., Bandarian E., The Clinical Follow-Up of Estradiol Benzoate Priming During Induction of Estrus with Cabergoline in Dogs, Top Companion Anim. Med., 32: 16-19 (2017).
[7] Pianezzola E., Bellotti V., Croix R.L., Strolin Benedetti M., Determination of Cabergoline in Plasma and Urine by High-Performance Liquid Chromatography with Electrochemical Detection, J. Chromatogr. A, 574: 170-174 (1992).
[8] Onal A., Sagirli O., Sensoy D., Selective LC Determination of Cabergoline in the Bulk Drug and in Tablets: in Vitro Dissolution Studies, Chromatographia, 65: 561-567 (2007).
[10] Igarashi K., Hotta K., Kasuya F., Abe K., Sakoda S., Determination of Cabergoline and L-Dopa in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry, J. Chromatogr. B, 792: 55-61 (2003).
[12] Jain R., Sinha A., A Graphene Based Sensor for Sensitive Voltammetric Quantification of Cabergoline, J. Electrochem. Soc., 161: H314-H320 (2014).
[15] Darroudi A., Eshghi H., Rezaeian S., Chamsaz M., Bakavoli M., Haghbeen K., Hosseiny A., A Novel Carbon Paste Electrode for Potentiometric Determination of Vanadyl Ion, Iran. J. Chem. Chem. Eng. (IJCCE), 34: 89-94 (2015).
[18] Naddaf E., Abedi M.R., Zabihi M.S., Imani A., Electrocatalytic Oxidation of Ethanol And Ethylene Glycol onto Poly (O-Anisidine)-Nickel Composite Electrode, Iran. J. Chem. Chem. Eng.(IJCCE), 36: 59-70 (2018).
[20] Hajializadeh A., Tajik S., Jahani Sh., Beitollahi H., Synergic Effect of Cu (II) Nanocomplex for the Fabrication of Highly Sensitive Voltammetric Sensor for Levodopa Determination, Anal. Bioanal. Electrochem., 10: 292-301 (2018).‏
[21] Asaadi N., Parhizkar M., Mohammadi Aref S., Bidadi, H., The Role of Polypyrrole in Electrical Properties of ZnO-Polymer Composite Varistors, Iran. J. Chem. Chem. Eng.(IJCCE), 36: 65-72 (2017).
[23] Arefi Nia N., Foroughi M.M., Jahani Sh., Shahidi Zandi M., Rastakhiz N., Fabrication of a New Electrochemical Sensor for Simultaneous Determination of Codeine and Diclofenac Using Synergic Effect of Feather-Type La3+-ZnO Nano-Flower, J. Electrochem. Soc., 166: B489-B497 (2019).
[25] Vakili Fathabadi V., Hashemipour Rafsanjani H., Foroughi M.M., Jahani Sh., Arefi Nia N., Synthesis of Magnetic Ordered Mesoporous Carbons (OMC) as an Electrochemical Platform for Ultrasensitive and Simultaneous Detection of Thebaine and Papaverine, J. Electrochem. Soc., 167: 027509 (2020).
[26] Gupta V.K., Agarwal S., Singhal B., Recent Advances on Potentiometric Membrane Sensors for Pharmaceutical Analysis, Comb. Chem. High Throughput Screen, 14: 284-302 (2011).
[27] Gupta V.K., Sethi B., Sharma R.A., Agarwal S., Bharti A., Mercury Selective Potentiometric Sensor Based on Low Rim Functionalized Thiacalix [4] Arene as a Cationic Receptor, J. Mol. Liq., 177: 114-118 (2013).
[28] Sheibani N., Kazemipour M., Jahani Sh., Foroughi M.M., A Novel Highly Sensitive Thebaine Sensor Based on MWCNT and Dandelionlike CO3O4 Nanoflowers Fabricated via Solvothermal Synthesis, Microchem. J., 149: 103980 (2019).
[29] Vgupta V.K., Ganjali M.R., Norouzi P., Khani H., Nayak A., Agrawal S., Electrochemical Analysis of Some Toxic Metals and Drugs by Ion Selective Electrodes, Crit. Rev. Anal. Chem., 41: 282-313 (2011).
[30] Srivastava S.K., Gupta V.K., Jain S., Determination of Lead Using Poly (Vinyl Chloride) Based Crown Ether Membrane, Analyst, 120: 495-498 (1995).
[31] Yan S.R., Foroughi M.M., Safaei M., Jahani Sh., Ebrahimpour N., Borhani F., Rezaei Zade Baravati Z., Aramesh-Boroujeni Z., Foog L.K., A Review: Recent Advances in Ultrasensitive and Highly Specific Recognition Aptasensors with Various Detection Strategies, RSC Adv., 155: 184–207 (2020).
[32] Jain A.K., Gupta V.K., Sahoo B.B., Singh L.P., Copper(II)-Selective Electrodes Based on Macrocyclic Compounds. Anal. Proc. Incl. Anal. Commun., 32: 99-101 (1995).
[33] Gupta V.K., Karimi-Maleh H., Sadegh R., Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Waste Water Samples Using a Voltammetric Nanosensor, J. Electrochem. Sci., 10: 303-316 (2015).
[34] Jandaghi N., Jahani Sh., Foroughi M.M., Kazemipour M., Ansari M., Cerium-Doped Flower-Shaped ZnO Nano-Crystallites as a Sensing Component for Simultaneous Electrochemical Determination of Epirubicin and Methotrexate, Microchim. Acta, 187: 24-35 (2020).
[35] Gupta V.K., Singh A.K., Kumawat L.K., Thiazole Schiff Base Turn-In Fluorescent Chemosensor
for Al3+ Ion
, Sens. Actuators B, 195: 98-108 (2014).
[36] Srivastava S.K., Gupta V.K., Jain S., PVC-Based 2,2,2-Cryptand Sensors for Zinc Ions, Anal. Chem., 68: 1272-1275 (1996).
[37] Farvardin N., Jahani Sh., Kazemipour M., Foroughi M.M., The Synthesis and Characterization of 3D Mesoporous Ceo2 Hollow Spheres as a Modifier for the Simultaneous Determination of Amlodipine, Hydrochlorothiazide and Valsartan, Anal. Methods, 12: 1767-1778 (2020).
[38] Gupta V.K., Pathania D., Agarwal S., Sharma S., Decolorization of Hazardous Dye from Water System Using Chemical Modified Ficus Carica Adsorbent, J. Mol. Liq., 174: 86-94 (2012).
[39] Gupta V.K., Kumar S., Singh R., Singh L.P., Shoora S.K., Sethi B., Cadmium (II) Ion Sensing Through P-Tert-Butyl Calix[6]Arene Based Potentiometric Sensor, J. Mol. Liq., 195: 65-68 (2014).
[40] Torkzadeh-Mahani R., Foroughi M.M., Jahani Sh., Kazemipour M., Hassani Nadiki H., The Effect of Ultrasonic Irradiation on the Morphology of Nio/CO3O4 Nanocomposite and Its Application to the Simultaneous Electrochemical Determination of Droxidopa and Carbidopa, Ultrason Sonochem., 56: 183-192 (2019).
[43] Yaghoubian H., Jahani Sh., Beitollahi H., Tajik S., Hosseinzadeh R., Biparva P., Voltammetric Determination of Droxidopa In The Presence of Tryptophan Using a Nanostructured Base Electrochemical Sensor, J. Electrochem. Sci. Technol., 9: 109-117 (2018).
[45] Gupta V.K., Atar N., Yola M.L., Üstündağ Z., Uzun L., A Novel Magnetic Fe@Au Core–Shell Nanoparticles Anchored Graphene Oxide Recyclable Nanocatalyst for the Reduction of Nitrophenol Compounds, Water Res., 48: 210-217 (2014).
[46] Rajaei M., Foroughi M.M., Jahani Sh., Shahidi Zandi M., Hassani Nadiki H., Sensitive Detection of Morphine in the Presence of Dopamine with La3+ Doped Fern-Like CuO Nanoleaves/ Mwcnts Modified Carbon Paste Electrode, J.Mol. Liq., 284: 462-472 (2019).
[47] Yola M.L., Gupta V.K., Eren T., Emre Şen A., Atar N., A Novel Electro Analytical Nanosensor
Based on Graphene Oxide/Silver Nanoparticles for Simultaneous Determination of Quercetin and Morin
, Electrochim. Acta, 120: 204-211 (2014).
[48] Gupta V.K., Mergu V.N., Kumawat L.K., Singh A.K., Selective Naked-Eye Detection of Magnesium(II) Ions Using A Coumarin-Derived Fluorescent Probe, Sens. Actuators B, 207: 216-223 (2015).
[49] Aramesh-Boroujeni Z., Asadi Z., Electrochemical Determination Venlafaxine at Nio/GR Nanocomposite Modified Carbon Paste Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), Online from May (2020).
[50] Gupta V.K., Mergu N., Kumawat L.K., Singh A.K., A Reversible Fluorescence “Off-On-Off” Sensor
 for Sequential Detection of Aluminum and Acetate/Fluoride Ions
, Talanta, 144: 80-89 (2015).
[51] Karimi-Maleh H., Tahernejad-Javazmi F., Atar N., Yola M.L., Gupta V.K., Ensafi A.A., A Novel DNA Biosensor Based on A Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug, Ind. Eng. Chem. Res., 54: 3634-3639 (2015).
[52] Iranmanesh T., Jahani Sh., Foroughi M.M., Shahidi Zandi M., Hassani Nadiki H., Synthesis of La2O3/MWCNT Nanocomposite as The Sensing Element for Electrochemical Determination of Theophylline, Anal. Methods, (2020).
         DOI: 10.1039/D0AY01336F.
[53] Jain A.K., Gupta V.K., Singh L.P., Neutral Carrier and Organic Resin Based Membranes as Sensors for Uranyl Ions, Anal. Proc. Incl. Anal. Commun., 32: 263-265 (1995).
[56] Khatami M., Alijani H., Sharifi I., Sharifi F., Pourseyedi S., Kharazi S., Khatami M.A., Leishmanicidal M., Activity of Biogenic Fe3O4 NanoparticlesSci. Pharm., 85: 36-45 (2017).
 [57] Kozitsina A.N., Malysheva N.N., Utepova I.A., Glazyrina Y.A., Matern A.I., Brainina KZ., Chupakhin O.N., An Enzyme-Free Electrochemical Method for the Determination of E. Coli Using Fe3O4 Nanocomposites with a Sio2 Shell Modified By Ferrocene, J. Anal. Chem., 70: 540-545
[58] Zhang X., Niu J., Zhang X., Xiao R., Lu M., Cai Z., Graphene Oxide-Sio2 Nanocomposite as the Adsorbent for Extraction and Preconcentration of Plant Hormones for HPLC Analysis, J. Chromatogr. B, 1046: 58-64 (2017).
[60] Bard A.J., Faulkner L.R., “Electrochemical Methods Fundamentals and Applications”, 2nd ed., New York: John Wiley & Sons, Inc., (2001).
 [61] Fathi S., Omrani S., Zamani S., Simple and Low-Cost Electrochemical Sensor Based on Nickel Nanoparticles for the Determination of Cabergoline, J. Anal. Chem., 71: 269-275 (2016).
[62] Beitollahi H., Tajik S., Alizadeh R., Nano Composite System Based on ZnO-Functionalized Graphene Oxide Nanosheets for Determination of Cabergoline, J. Electrochem. Sci. Technol., 8: 307-313 (2017).
[63] Igarashi K., Hotta K., Kasuya F., Abe K., Sakoda S.,Determination of Cabergoline and L-Dopa
in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry
, J. Chromatogr. B, 792: 55-61 (2003).
[64] Önal A., Sağırlı O., Şensoy D., Selective LC Determination of Cabergoline in the Bulk Drug and in Tablets: In Vitro Dissolution Studies, Chromatographia, 65: 561-567 (2007).