Modeling of Ultrasound-Assisted Extraction, Chemical Composition, Antioxidant Activity, Rheological Aspects, and Biological Properties of “Barhang-e-Kabir” Mucilage

Document Type : Research Article

Authors

1 Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, I.R. IRAN

2 Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, I.R. IRAN

Abstract

In this study, response surface methodology (RSM) was used to investigate the influence of independent process parameters including water to seed ratio (g/g), temperature (°C), time (min), and ultrasonic intensity (%) on the extraction yield of “Barhang-e-Kabir”. Chemical composition, monosaccharide composition (using HPAEC-PAD), molecular conformation, molecular weight properties, Surface tension, ζ-potential, particle size distribution, Fourier Transform InfraRed (FT-IR) spectroscopy, color measurement, Total Phenol Content (TPC), Total Flavonoid Content (TFC), Antioxidant Activity (AA), antimicrobial and dilute-solution and steady-state behavior were evaluated. The optimum condition to obtain maximum extraction yield (13.1 %) was extraction temperature 70 ᵒC, extraction time 40 min, water to seed ratio of 1:10, and ultrasonic power of 90 %. Plantago major gum (PMG) had 89.24% carbohydrate, 4.53% ash, 4.11% moisture, and 2.12% protein. Viscometric molecular weight and average molecular weight were found to be 1.13 ×105 g/mol and 9.9 ×105 g/mol, respectively. The intrinsic viscosity of PMG was 12.56 dL/g in deionized water at 25 ºC. Steady shear measurement demonstrated that PMG is a shear-thinning fluid with high viscosity at low concentration. TPC, TFC and AA (IC50) tests of PMG showed 89.80 ± 1.23 mg GAE/g dry sample, 123.25 ± 1.32 mg g−1dry sample, and 470.45 ± 0.35 µg/mL, respectively. Prevention of linoleic acid oxidation in the system of ß-Carotene-linoleic acid was equal to 32.45 %. The results showed that Streptococcus pyogenes and Pseudomonas aeruginosa are the most sensitive and highest resistance strain to PMG, respectively.

Keywords

Main Subjects


[1] Kök M., Hill S., Mitchell J., Viscosity of Galactomannans During High Temperature Processing: Influence of Degradation and Solubilisation, Food. Hydro., 13(6): 535-542
 (1999).
[3] Alizadeh Behbahani B., Tabatabaei Yazdi F., Shahidi F., Hesarinejad M. A., Mortazavi S. A., Mohebbi M., Plantago major Seed Mucilage: Optimization of Extraction and Some Physicochemical and Rheological Aspects, Carbo. Poly., 155: 68-77 (2017).
[4] Koocheki A., Mortazavi S.A., Shahidi F., Razavi S.M.A., Taherian A.R., Rheological Properties of Mucilage Extracted from Alyssum homolocarpum Seed as a New Source of Thickening Agent, J. Food. Eng., 91(3):490-496 (2009).
[7] Niknam R., Ghanbarzadeh B., Ayaseh A., Rezagholi F., The Effects of Plantago major Seed Gum on Steady and Dynamic Oscillatory Shear Rheology of Sunflower Oil‐in‐Water Emulsions, J. Tex. Studi., 49(5): 536-547 (2018).
[8] Niknam R., Ghanbarzadeh B., Ayaseh A., Adun P., Comprehensive Study of Intrinsic Viscosity, Steady and Oscillatory Shear Rheology of Barhang Seed Hydrocolloid in Aqueous Dispersions, J. Food. Proce. Eng., 42(4): e13047 (2019).
[10] Alizadeh Behbahani B., Shahidi F., Tabatabaei Yazdi F., Mortazavi S. A., Mohebbi M., Use of Plantago major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum graveolens Essential Oil on Shelf Life Extension of Beef in Refrigerated Storage, Int. J. Bio. Macro., 94: 515-526 (2017).
[11] Dubois M., Gilles K. A., Hamilton J. K., Rebers P. T., Smith F., Colorimetric Method for Determination of Sugars and Related Substances, Ana. Chem., 28(3): 350-356 (1956)
[14] Rhein-Knudsen N., Ale M. T., Ajalloueian F., Yu L., Meyer A. S., Rheological Properties of Agar and Carrageenan from Ghanaian Red Seaweeds, Food. Hydro., 63: 50-58. (2017).
[15] Ellerbrock R. H., Ahmed M. A., Gerke H. H., Spectroscopic Characterization of Mucilage (Chia Seed) and Polygalacturonic Acid, J. Plant. Nutri. Soil. Sci., 182(6): 888-895 (2019).
[16] Huggins M. L., The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration, J. Ameri. Chem. Soci., 64(11): 2716-2718 (1942).
[17] Kraemer E. O., Molecular Weights of Celluloses and Cellulose Derivates, Indus. Eng. Chem., 30(10): 1200-1203 (1938).
[18] Tanglertpaibul T., & Rao M., Intrinsic Viscosity of Tomato Serum as Affected by Methods of Determination and Methods of Processing Concentrates, J. Food. Sci., 52(6): 1642-1645 (1987).
[19] Higiro J., Herald T., Alavi S., Bean S., Rheological Study of Xanthan and Locust Bean Gum Interaction in Dilute Solution: Effect of Salt, Food Res. Int., 40(4): 435-447 (2007).
[20] Gaisford S., Harding S., Mitchell J., Bradley T. A., Comparison Between the Hot and Cold Water Soluble Fractions of Two Locust Bean Gum Samples, Carbo. Poly., 6(6): 423-442 (1986).
[21] Lai L., Tung J., Lin P., Solution Properties of Hsian-Tsao (Mesona procumbens Hemsl) leaf Gum, Food. Hydro., 14(4): 287-294 (2000).
[22] Kiarsi Z., Hojjati M., Alizadeh Behbahani B., Noshad M., In Vitro Antimicrobial Effects of Myristica fragrans Essential Oil on Foodborne Pathogens and Its Influence on Beef Quality During Refrigerated Storage, J. Food. Safe., 40 (3): e12782 (2020).
[23] Gökbel H., Özcan M. M., Duran A., Hamurcu M., Çelik M., Uslu N.,  Demiral T., Mineral Contents and Bioactive Properties of Centaura spp. Leave and Seeds, Iran. J. Chem. Chem. Eng. (IJCCE), 34(4): 79-88 (2015).
[24] Ciğeroğlu Z., Kırbaşlar Ş. İ., Şahin S.,  Köprücü G., Optimization and Kinetic Studies of Ultrasound-Assisted Extraction on Polyphenols from Satsuma Mandarin (Citrus Unshiu Marc.) Leaves, Iran. J. Chem. Chem. Eng. (IJCCE),36(5): 163-171 (2017).
[25] Özcan G., Özcan M.M., The Total Phenol, Flavonol Amounts and Antiradical Activity of some Oreganum Species, Iran. J. Chem. Chem. Eng. (IJCCE), 37(4): 163-168 (2018).
[26] Taherkhani M., Chemical Investigation and Protective Effects of Bioactive Phytochemicals from Artemisia ciniformis, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 15-26 (2016).
[28] Alizadeh Behbahani B., Tabatabaei Yazdi F.T., Shahidi F., Noorbakhsh H., Vasiee A., Alghooneh A., Phytochemical analysis and Antibacterial Activities Extracts of Mangrove Leaf Against the Growth of Some Pathogenic Bacteria, Micro. Patho., 114: 225-232 (2018).
[31] Jouki M., Mortazavi S. A., Tabatabaei Yazdi F., Koocheki A., Optimization of Extraction, Antioxidant Activity and Functional Properties of Quince Seed Mucilage by RSM, Int. J. Bio. Macro., 66: 113-124 (2014).
[33] Amin A.M., Ahmad A. S., Yin Y.Y., Yahya N., Ibrahim N., Extraction, Purification and Characterization of Durian (Durio zibethinus) Seed Gum, Food. Hydro., 21(2): 273-279 (2007).
[34] Sepúlveda E., Sáenz C., Aliaga E., Aceituno C., Extraction and Characterization of Mucilage in Opuntia spp, J. Arid Envir., 68(4): 534-545 (2007).
[35] Bostan A., Razavi S. M., Farhoosh R., Optimization of Hydrocolloid Extraction from Wild Sage Seed (Salvia macrosiphon) using Response Surface, Int. J. Food. Proper., 13(6): 1380-1392 (2010).
[36] Busch V.M., Kolender A.A., Santagapita P. R., Buera M.P., Vinal Gum, a Galactomannan from Prosopis ruscifolia Seeds: Physicochemical Characterization, Food. Hydro., 51: 495-502. (2015).
[37] Kang J., Cui S. W., Chen J., Phillips G. O., Wu Y., Wang Q., New Studies on Gum Ghatti (Anogeissus latifolia) Part I. Fractionation, Chemical and Physical Characterization of the Gum, Food. Hydro., 25(8): 1984-1990 (2011).
[38] Dakia P. A., Blecker C., Robert C., Wathelet B., Paquot M., Composition and Physicochemical Properties of Locust Bean Gum Extracted from Whole Seeds by Acid or Water Dehulling Pre-treatment, Food. Hydro., 22(5): 807-818 (2008).
[39] Li J.-w., Ding S.-d., Ding X.-l., Optimization of the Ultrasonically Assisted Extraction of Polysaccharides from Zizyphus jujuba cv. Jinsixiaozao, J. Food. Eng., 80(1): 176-183 (2007).
[40] Jiang J. x., Jian H. l., Cristhian C., Zhang W. M., Sun R.C., Structural and Thermal Characterization of Galactomannans from Genus Gleditsia Seeds as Potential Food Gum Substitutes, J. Sci. Food. Agri., 91(4): 732-737 (2011).
[41] Smirnova N., Mestechkina N., Sherbukhin V., Fractional Isolation and Study of the Structure of Galactomannan from Sophora (Styphnolobium japonicum) Seeds, Appli, Biochem Micro, 40(5): 517-521 (2004).
[42] Edwards M., Scott C., Gidley M. J., Reid J. G., Control of Mannose/Galactose Ratio During Galactomannan Formation in Developing Legume Seeds, Planta., 187(1): 67-74 (1992).
[43] Cerqueira M., Bourbon A., Pinheiro A., Martins J., Souza B., Teixeira J., Vicente A., Galactomannans Use in the Development of Edible Films/Coatings for Food Applications, Trend. Food. Sci. Tech., 22(12): 662-671 (2011).
[44] Malsawmtluangi C., Thanzami K., Lalhlenmawia H., Selvan V., Palanisamy S., Kandasamy R., Pachuau L., Physicochemical Characteristics and Antioxidant Activity of Prunus cerasoides D. Don Gum Exudates, Int. J. Bio. Macro., 69: 192-199 (2014).
[45] Farahnaky A., Bakhshizadeh-Shirazi S., Mesbahi G., Majzoobi M., Rezvani E., Schleining G., Ultrasound-Assisted Isolation of Mucilaginous Hydrocolloids from Salvia macrosiphon Seeds and Studying Their Functional Properties, Innov. Food. Sci. Emer. Tech., 20: 182-190 (2013).
[46] Cui W., Mazza G., Physicochemical Characteristics of Flaxseed Gum, Food. Res. Int., 29(3-4): 397-402 (1996).
[48] Sherahi M. H., Fathi M., Zhandari F., Hashemi S. M. B., Rashidi A., Structural Characterization and Physicochemical Properties of Descurainia sophia Seed Gum, Food. Hydro., 66: 82-89 (2017).
[49] Fathi M., Mohebbi M.,  Koocheki A., Introducing Prunus cerasus Gum Exudates: Chemical Structure, Molecular Weight, and Rheological Properties, Food. Hydro., 61: 946-955 (2016).
[50] Percival E.G.V., Structural Carbohydrate Chemistry, Structural Carbohydrate Chemistry. (Ed. 2). (1962).
[51] Hesarinejad M. A., Razavi S. M., Koocheki A., Alyssum homolocarpum Seed Gum: Dilute Solution and Some Physicochemical Properties, Int. J. Bio. Macro., 81: 418-426 (2015).
[52] Anvari M., Tabarsa M., Cao R., You S., Joyner H. S., Behnam S., Rezaei M., Compositional Characterization and Rheological Properties of an Anionic Gum from Alyssum homolocarpum Seeds, Food. Hydro., 52: 766-773 (2016).
[53] Vanloot P., Dupuy N., Guiliano M., Artaud J., Characterisation and Authentication of A. senegal and A. seyal Exudates by Infrared Spectroscopy and Chemometrics, Food. Chem., 135(4): 2554-2560 (2012).
[54] Kacurakova M., Capek P., Sasinkova V., Wellner N., Ebringerova A., FT-IR Study of Plant Cell Wall Model Compounds: Pectic Polysaccharides and Hemicelluloses, Carbo. Poly., 43(2): 195-203 (2000).
[55] Yuen S.-N., Choi S.-M., Phillips D. L., Ma C.-Y., Raman and FTIR Spectroscopic Study of Carboxymethylated Non-Starch Polysaccharides, Food. Chem, 114(3): 1091-1098 (2009).
[56] Sharma V. K., Mazumdar B., Feasibility and Characterization of Gummy Exudate of Cochlospermum religiosum as Pharmaceutical Excipient, Indus. Crop. Produc., 50: 776-786 (2013).
[57] Ogutu F. O., Mu T.-H., Ultrasonic Degradation of Sweet Potato Pectin and Its Antioxidant Activity, Ultra. Sonochem., 38: 726-734 (2017).
[58] Wu Y., Cui W., Eskin N., Goff H., An Investigation of Four Commercial Galactomannans on Their Emulsion and Rheological Properties, Food. Res. Int., 42(8): 1141-1146 (2009).
[59] Razavi S. M., Moghaddam T. M., Emadzadeh B., Salehi F., Dilute Solution Properties of Wild Sage (Salvia macrosiphon) Seed Gum, Food. Hydro., 29(1): 205-210 (2012).
[60] Morris E. R., Cutler A., Ross-Murphy S., Rees D.,  Price J., Concentration and Shear Rate Dependence of Viscosity in Random Coil Polysaccharide Solutions, Carbo. Poly., 1(1): 5-21 (1981).
[61] Lapasin R., Pricl S., Rheology of Polysaccharide Systems. In Rheology of Industrial Polysaccharides: Theory and Applications, (pp. 162-249): Springer (1995).
[62] Yang B., Jiang Y., Zhao M., Shi J., Wang L., Effects of Ultrasonic Extraction on the Physical and Chemical Properties of Polysaccharides from Longan Fruit Pericarp, Poly. Degra. Stabi., 93(1): 268-272 (2008).
[65] Faria S., de Oliveira Petkowicz C. L., de Morais S. A. L., Terrones M.G.H., de Resende M. M., de França F.P., Cardoso V.L., Characterization of Xanthan Gum Produced from Sugar Cane Broth, Carbo. Poly., 86(2): 469-476 (2011).
[66] Martinez K., Baeza R., Millan F., Pilosof A., Effect of Limited Hydrolysis of Sunflower Protein on the Interactions with Polysaccharides in Foams, Food. Hydro., 19(3): 361-369 (2005).
[67] Zhong K., Zhang Q., Tong L., Liu L., Zhou X., Zhou S., Molecular Weight Degradation and Rheological Properties of Schizophyllan under Ultrasonic Treatment, Ultra. Sonochem., 23: 75-80 (2015).
[68] Feng H., Barbosa-Cánovas G.V., Weiss J., Ultrasound Technologies for Food and Bioprocessing: Springer (2011).
[69] Marcotte M., Hoshahili A.R.T., Ramaswamy H., Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature, Food. Res. Int., 34(8): 695-703 (2001).
[70] Nehdi I., Characteristics, Chemical Composition and Utilisation of Albizia julibrissin Seed Oil, Indus. Crop. Produc., 33(1): 30-34 (2011).
[71] Maskan M., Göǧüş F., Effect of Sugar on the Rheological Properties of Sunflower Oil–Water Emulsions, J. Food. Engin., 43(3): 173-177 (2000).
[72] Hosseini-Parvar S. H., Osano J. P., Matia-Merino L., Emulsifying Properties of Basil Seed Gum: Effect of pH and Ionic Strength, Food. Hydro., 52: 838-847 (2016).
[75] Venugopal K. N., Abhilash M., Study of Hydration Kinetics and Rheological Behaviour of Guar Gum, Int. J. Pharm. Sci. Res., 1(1): 28-39 (2010).
[76] Chaires-Martínez L., Salazar-Montoya J., Ramos-Ramírez E., Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida), Europ. Food. Res. Tech., 227(6): 1669 (2008).
[77] Razavi S.M.A., Cui S.W., Guo Q., Ding H., Some Physicochemical Properties of Sage (Salvia macrosiphon) Seed Gum, Food. Hydro., 35: 453-462 (2014).
[78] Brummer Y., Cui W., & Wang Q., Extraction, Purification and Physicochemical Characterization of Fenugreek Gum, Food. Hydro., 17(3): 229-236 (2003).
[79] Huang X., Kakuda Y., Cui W., Hydrocolloids in Emulsions: Particle Size Distribution and Interfacial Activity, Food. Hydro., 15(4-6): 533-542 (2001).
[80] Farooq U., Sharma K., Malviya R., Extraction and Characterization of Almond (Prunus sulcis) Gum as Pharmaceutical Excipient, Ameri. Euras. J Agric. Environ. Sci., 14: 269-274 (2014).