Determination of Bioactive Properties, Phenolic Compounds and Mineral Contents of Boiled Fruit Juice Types

Document Type : Research Article

Authors

1 Belarusian Medical Academy of Postgraduate Education, 3, P. Brovki str., Minsk, 220013, Republic, of Belarus;1Belarusian State University, ISEI BSU,23/1, Dolgobrodskaya str, 220070, Republic of BELARUS

2 Department of Food Engineering, Faculty of Agriculture, Selçuk University, 42031 Konya, TURKEY

Abstract

Antioxidant activity, total phenol, total flavonoid, and anthocyanin contents, phenolic compounds, and macro-and microelement contents of concentrated fruit pulp (boiled juices) were determined. While antioxidant activities of marmalade samples varied between 99.6% (Mahaleb) and 117.2% (Cornus), total phenolics of boiled juices changed between 103.52 (Mahaleb) mg GAE/100g and 126.63 mg GAE/100g (Cornus). In addition, while gallic acid contents of marmalade (boiled juices) extracts are determined between  0.91 (Mahaleb) and 6.27 mg/100g (Cornus), (+)-Catechin contents of marmalade samples varied between 3.29 mg/100g (Mahaleb) and 9.61 mg/100g (Cornus). K and P contents of boiled juices were found between  271.37 mg/Kg(Rosa) and 8004.00 mg/kg (Mahaleb) to 55.12 (Cornus) and 415.12  (Mahaleb) mg/kg, respectively.  Fe contents of boiled juices changed between 12.97 (Rosa) and 16.92 mg/kg (Cornus). Among samples, the highest Cu (1.75 mg/kg), Mn (1.08 mg/kg), and Zn (7.62 mg/kg) contents were found in mahaleb boiled juice. According to the results, boiled juice samples are rich in bioactive compounds, phenolics, and some minerals (Ca, K, Mg, Na, and P).

Keywords

Main Subjects


[1] Tural S., Koca I., Physicochemical and Antioxidant Properties of Cornelian Cherry Fruits (Cornus mas L.) Grown in Turkey, Sci Hortic, 116: 362–366 (2008).
[2] Brickell C., “RHS AZ Encyclopedia of Garden Plants”. Dorling Kindersley, London: ISBN 0-7513-3738-2 (2003).
[3] Barros L., Carvalho A.M., Ferreira I.C., Comparing the Composition and Bioactivity of Crataegus Monogyna Flowers and Fruits Used in Folk Medicine, Phytochem Anal, 22: 181–188 (2011).
[4] Nabavi S.F., Habtemariam S., Ahmed T., Sureda A., Daglia M., Sobarzo-Sánchez E., Nabavi S.M., Polyphenolic Composition of Crataegus monogyna Jacq.: From Chemistry to Medical Applications, Nutrients, 7: 7708-7728 (2015).
[5] Nichenametla S.N., Taruscio T.G., Barney DL, Exon J.H., A Review of the Effects and Mechanisms of Polyphenolics İn Cancer, Crit Rev Food Sci Nutr, 46: 161-183 (2006).
[6] Kong J-M., Chia L-S, Goh N-K., Chia T-F, Brouillard R., Analysis and Biological  Activities of Anthocyanins, Phytochem, 64: 923-933 (2003).
[7] Lee D.J., Lee H., Lee S-H., Lee C.Y., Kim D-O., Effects of Jam Processing on Anthocyanins and Antioxidant Capacities of Rubus Coreanus Miquel Berry, Food Sci. Biotechnol, 22(6): 1607-1612 (2013).
[8] Patra, A., Brunton N.P., O'Donnell C., Tiwari B.K., Effect of Thermal Processing on Anthocyanin Stability İn Foods; Mechanisms and Kinetics of Degradation, Trends Food Sci. Tech., 21: 3-11 (2010).
[9] Cendrowski A., Kraśniewska K., Przybył J.L., Zielińska A., Kalisz S., Antibacterial and Antioxidant Activity of Extracts from Rose Fruits (Rosa rugosa). Molecules, 25(6): 1365 (2020).
[10] Hendrich A.B., Strugała P., Dudra A., Kucharska A.Z., Sokół-Łętowska A., Wojnicz D., Cisowska A., Sroka Z., Gabrielska J., Microbiological, Antioxidant and Lipoxygenase-1 İnhibitory Activities of Fruit Extracts of Chosen Rosaceae Family Species, Advances in Clinical Experiment Med, 29(2): 215-224 (2020).
[11] Sagdic O., Toker O.S., Polat B., Arici M., Yilmaz M.T., Bioactive and Rheological Properties of Rose Hip Marmalade, J. Food Sci. Technol-Mysore, 52(10): 6465-6474 (2015).
[12] Yoo K.M., Lee K.W., Park J.B., Lee H.J., Hwang I.K., Variation in Major Antioxidants and Total Antioxidant Activity of Yuzu (Citrus junos Sieb ex Tanakaanaka) During Maturation and between Cultivars, J. Agric Food Chem., 52: 59 07-5913 (2004).
[13] Lee S.K., Mbwambo Z.H., Chung H.S., Luyengi L., Games E.J.C, Mehta R.G., Evaluation of the Antioxidant Potential of Natural Products, Comb Chem High Throug Screen1, 35-46 (1998).
[14] Ticconi C.A., Delatorre C.A., Abel S., Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis, Plant Physiol., 127(3): 963–972 (2001).
[15] Dewanto V., Wu X., Adom K.K., Liu R.H., Thermal Processing Enhances the Nutritional Value of Tomatoes by İncreasing Total Antioxidant Activity, J. Agric. Food Chem., 50(10): 3010- 3014 (2002).
[16] Ivanova D., Gerova D., Chervenkov T., Yankova T. Polyphenols and Antioxidant Capacity of Bulgarian Medicinal Plants, J. Ethnopharm., 96: 145-150 (2005).
[17] Skujins S., Handbook for ICP-AES (Varıan-Vista), “A Short Guıde To Vista  Series ICP-AES Operation”. Varian Int. AGşZug.Version 1.0. pp 29. Switzerland (1998).
[18] Püskülcü H., Ikiz F., “Introdiction to Statistics”. Bilgehan Presss, p 333, Bornova, Izmir , Turkey (in Turkish) (1989).
[19] Pirone B.N., Ochoa M.R., Kesseler A.G., Michelis D., Chemical characterization and Evolution of Ascorbic Acid Concentration During Dehydration of  Rosehip (Rosa eglanteria) Fruits, Am. J. Food Technol., 377-387 (2007).
[20] Heinonen J.M., Meyer A.S., Frankel E.N., Antioxidant Activity of Berry Phenolics on Human Low-Density Lipoprotein and Liposome Oxidation, J. Agric. Food Chem., 46: 4107-4112 1998.
[21] Ercişli S., Chemical Composition of Fruits in Some Rose (Rosa spp.) Species, Food Chem., 104: 1379-1384 (2007).
[22] Su L., Yin J.J., Charles D., Zhou K., Moore J., Total Phenolic Contents, Chelating Capacities and Radical-Scavencing Properties of Black Peppercorn, Nugmet, Rosehip,  Cinnamon and Oregano Leaf, Food Chem., 100: 990-997 (2007).
[23] Egea I., Sanchez-Belo P., Romojaro F., Pretel M.T., Six Edible Wild Fruits as Potential Antioxidant Additives or Nutritional Supplements, Plant Foods Hum. Nutr., 65:121-129 (2010).
[24] Fattahi S., Jamei R., Hosseini Sarghein S., Antioxidant and Antiradicalic Activity of  Rosa  canina and Rosa pimpinellifolia Fruits from West Azerbaijan, Iran J. Plant Physiol., 2(4): 523-529 (2012).
[25] Roman I., Stanila A., Stanila S., Bioactive Compounds and Antioxidant Activity of Rosa canina L. Biotypes from Spontaneous Flora of Transilvania, Chem. Cent. J., 7: 2-10 (2003).
[26] Guerrero C.J., Ciampi P.L., Castilla A.C., Medel S.F., Schalchli H.S., Hormazabal E.U., Bensch E.T., Alberdi M.L., Antioxidant Capacity, Anthocyanins, and Total Phenols of Wild and  Cultivated Berries in Chile, Chil J Agr Res., 70(4): 537-544 (2010).
[27] İlbay Z., Şahin S., Kirbaşlar Ş.İ., Investigation of Polyhenolic Content of Rose Hip  (Rosa canina L.) Tea Extracts: A Comparative Study, Foods, 2(1): 43-52 (2013.).
[28] Sass-Kiss A., Differences in Anthocyanin and Carotenoid Content of Fruits and Vegetables, Food Res. Int., 38: 1023-1029 (2005).
[29] Dimitrijevic D., KosticD.A., Stojanovic G. S., Mitic S.S., Mitic M.N., Dordevic A.S., Phenolic Composition, Antioxidant Activity, Mineral Content and Antimicrobial Activity of Fresh Fruit Extracts of Morus alba L., J. Food Nutr. Rev., 53, 22-30 (2014).
[30] Karakaya M., Artık N., Zile hard Grape Pekmez Production Technology and Determination of Its Components (Zile pekmezi üretim tekniği ve bileşim unsurlarının belirlenmesi), Gıda, 15(3): 151-154 (1990).
[31] Topçu  A.A., Besler H.T., Yurttagul M., Pekmez (grape juice molasses) Mineral Contents, Food Technol., 2: 46-49 (1997).