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ABSTRACT: This article investigates the mixed convection flow of viscoelastic liquid because  

of an extending cylinder. The heat transfer investigation has been completed. Energy equation  

in attendance of heat, radiations are considered. Convective limit conditions for heat and mass 

exchange are utilized on the outside of the extending cylinder. Suitable transformations are utilized 

to decrease the overseeing nonlinear partial differential equations into standard differential 

equations. The subsequent differential equations alongside the boundary conditions are solved 

analytically by utilizing the homotopy investigation strategy (HAM) for acquiring the convergent 

series solutions. The effects of physical parameters on the velocity and temperature fields  

are investigated. Numerical estimations of local Nusselt numbers are computed and analyzed. 
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INTRODUCTION 

Heat transfer investigation of boundary layer streams 

of non-Newtonian liquids overextending surface has increased 

a lot of significance in the ongoing years on account of  

its event in designing, fabricating, and mechanical 

procedures. Such streams showed up in glass fiber and 

paper creation, material industry, streamlined expulsion of 

plastic sheets, polymeric industry, and so forth. In a large 

portion of the investigations, the boundary layer equations 

over linear, non-linear, and exponentially stretching sheets 

are considered. The flows due to the stretching cylinder 

have not been discussed extensively in the literature.  

Wang [1] studied the steady incompressible flow of 

viscous fluid by a stretching hollow cylinder. Bachok  

and Ishak [2] investigated the flow and heat transfer over 

a stretching cylinder with prescribed surface heat flux. 

Numerical solutions  are  developed  to  analyze 

 

 

 

the flow problem. It is observed that the surface shear 

stress and the heat transfer rate at the surface increase when 

the curvature parameter increases. Mukhopadhyay [3] 

investigated the boundary layer flow and heat transfer 

over a stretching cylinder with slip and MHD effects. 

Vajravelu et al. [4] examined the effects of transverse 

curvature and temperature-dependent thermal conductivity 

in the magnetohydrodynamic axisymmetric flow induced 

by a non-isothermal stretching cylinder. Heat transfer 

characteristics have been considered in presence of 

internal heat generation/ absorption. Rasekh et al. [5] 

obtained the numerical solution for the flow of nanofluid 

past a stretching circular cylinder with a non-uniform heat 

source. Boundary layer flow of an Eyring--Powell fluid 

with variable viscosity over a stretching cylinder is discussed 

by Malik et al. [6]. Sheikholaslami [7-9] provided 
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the solutions of nanofluid models in presence of entropy 

by using analytic and numerical techniques. 

Mixed convection flow is quite prevalent in various 

applications of science and technology. Such types of 

flows occurred due to both external forcing agents and 

internal volumetric forces. Mixed convection flow 

problems appear in processes like solar central receivers 

exposed to winds, electronic devices cooled by fans, 

nuclear reactors cooled during an emergency shutdown, etc. 

Natural convection boundary layer flow on a horizontal 

elliptical cylinder with constant heat flux and temperature-

dependent heat generation is studied by Cheng [10].  

The numerical solutions of governing non-linear equations 

are presented by the cubic spline collection method. 

Mukhopadhyay [11] investigated the unsteady mixed 

convection flow over a stretching plate in presence of slip 

effects. Hayat et al. [12] studied the stagnation point flow 

of Casson fluid with convective boundary conditions.  

The problem of mixed convection about an inclined flat 

plate embedded in a porous medium is performed  

by Rashidi et al. [13]. They have used the differential transform 

method to analyze the flow problem. Sheikholeslami and 

Seyednezhad [14] studied the natural convection in a porous 

medium in presence of an electric field using CVFEM.  

In space technology and process relating to high 

temperatures, the effects of radiation are of vigorous 

importance for the design of reliable equipment, nuclear 

plants, gas turbines, and various propulsion devices or aircraft, 

missiles, satellites, and space vehicles. Imtiaz et al. [15] 

provided the analytical solution of homogeneous-

heterogeneous reactions in MHD radiative flow of second-

grade fluid due to a curved stretching surface. Effect of 

melting and heat generation/absorption on Sisko nanofluid 

over a stretching surface with nonlinear radiation was 

studied by Mabood et al. [16].  Ashraf et al [17] presented 

the solutions for the MHD flow and heat transfer in mixed 

convection flow of viscoelastic fluid past a stretching 

surface in presence of Soret and Dufour effects. Also, heat 

transfer between a solid boundary and static fluid occurs 

due to conduction purely. Such problems correspond to 

boundary conditions through Fourier's law of heat 

conduction. However, the heat transfer through the solid 

boundary and moving fluid is because of the effects of both 

conduction and convection. The boundary condition, in 

this case, is due to the Fourier law of heat conduction  

and Newton's law of cooling which is termed as convective 

boundary condition Ashraf et al. [18]. To maintain  

a healthy building given fresh air ventilation convective 

boundary conditions have the main role. 

The objective of the present study is to investigate  

the mixed convection flow of viscoelastic fluid over a 

stretching cylinder with thermal radiation. Thermal 

convective condition is imposed on the surface. The 

governing boundary layer equations are reduced into  

the ordinary differential equations by using suitable 

transformations. The solutions are obtained by employing 

the homotopy analysis method [19-23]. The behaviors of 

velocity, temperature, and Nusselt number have been 

analyzed in presence of thermal radiation and mixed 

convection parameters. 

 

Governing problems 

We consider the steady incompressible flow of 

viscoelastic fluid by a stretching cylinder at r =0. The flow 

takes place in the domain r > 0. Here x-axis is taken along 

the axis of the cylinder and the  r  -axis is measured along 

the radial direction. The thermal radiation effect is considered 

in the presence of the convective condition. The geometry 

of the flow problem is as follows. 

The governing boundary layer equations for the 

considered flow problems are: 
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subjected to the following boundary conditions 
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Fig. A: Physical model. 

 

with the surface temperature Tw by  

n

w

x
T ( x , R ) T ( x ) T T

l


 
    

 

                                     (6) 

In Eqs. (1)-(5) the respective velocity components  

in the x  and r directions are denoted by u and v, k0  

the viscoelastic parameter, k the thermal conductivity,  

T the fluid temperature, g the gravitational acceleration,  

T the thermal expansion coefficients,  the thermal 

diffusivity of fluid,  v= ( / ) the kinematic viscosity,  

 the dynamic viscosity of the fluid,  the density of the fluid, 

l the characteristic length, Tw(x) the surface temperature,  

uw(x) the stretching velocity, cp the specific heat, T  

the ambient temperature and qr the radiative heat flux. 

The radiative heat flux qr through Rosseland 

approximation is 

4

s

r

e

4 T
q

3 k r

 
 


                                                                  (7) 

Where s is the Stefan-Boltzmann constant and ke  

the mean absorption coefficient. If the temperature 

differences are sufficiently small then Eq. (7) can be linearized 

by expanding T4 into the Taylor series about T which  

after neglecting higher-order terms takes the form: 

4 3 4
T 4 T T 3T

 
                                                                    (8) 

By using Eqs. (7) and (8), Eq. (3) reduces to  
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We define the transformations [6]: 
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Now Eq. (1) is automatically satisfied while Eqs. (2, 4), 

and (9) have the following forms: 
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Where  is the curvature parameter, K is the 

viscoelastic parameter, Pr is the Prandtl number,  is 

 the Biot number,  is the local buoyancy parameter, Grx 

is the local Grashof number,  𝑅𝑑  is the radiation parameter 

and prime shows the differentiation with respect to . 

These are given by  
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Local Nusselt number in dimensionless form is given 

by 

 
1 2

x

4
N u R e 1 R 0

3

 
    
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                                         (16) 

in which Rex = uex / v is the local Reynolds number. 

 

Series solutions 

The initial approximations and auxiliary linear 

operators are essential for homotopy analysis solutions. 

We selected the following initial guesses and auxiliary 

operators. 



Iran. J. Chem. Chem. Eng. Bilal Ashraf M. Vol. 40, No. 5, 2021 

 

1686                                                                                                                                                              Research Article 

 0 0

ex p ( )
f ( ) 1 e ,  ( )

1

    
     

 
                                (17) 

f
L f f ,    L


                                                         (18) 

The above auxiliary linear operators satisfy the 

following properties 
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where Ci (i = 1-5) indicates the arbitrary constants. 

The corresponding problems at the zeroth order are 
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Here p is an embedding parameter, 
f

 and 


 are  

the non-zero auxiliary parameters. 
f

N and 


N  indicate 

the nonlinear operators. When p=0 and p = 1 one has: 
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The convergence of the above series strongly depends 

upon 
f

 and 


. Considering that 
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 and 
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 are selected 

properly so that Eqs. (26) and (27) converge at p = 1 then 

we can write 

0 m
m 1

f ( ) f ( ) f ( ) ,





                                                          (28) 

0 m
m 1

( ) ( ) ( )





                                                             (29) 

The resulting problems at mth order deformation  
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Solving the above mth order deformation problems we 

have  
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in which the 
*
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*

m
  indicate the special solutions. 

 

Convergence analysis and discussion 

The auxiliary parameters 
f

 and 


 are involved  

in the series solutions Eq. (35) and Eq. (36). These 

parameters have a pivotal role in controlling  

the convergence of homotopic solutions. For obtaining  

the suitable ranges 
f

 and 


 the   curves are displayed 

in the 15th order of approximations. The acceptable  

values of 
f

 and 


 are 
f

1 .4 0 .3 0     and 

1 .60 0 .25


     (see Fig.1). Table 1 ensures that  

the developed series solutions converge in the whole 

region of  when 
f

0 .7


   . 

Figs. 2a-2e are drawn to see the impacts of curvature 

parameter , viscoelastic parameter K, mixed convection 

parameter   Biot number  and temperature exponent n  

on the velocity profile f ( )  . Fig. 2a depicts the influence 

of curvature parameter  on the velocity profile f ( )  . It is 

noted that both the momentum boundary layer thickness and the 

velocity profile f ( )   increase when we increase the values of 

the curvature parameter . This is due to the fact that when we 

increase the curvature parameter , the radius of the cylinder 

decreases so the area of the cylinder in contact with fluid 

decreases. The effect of viscoelastic parameter K on the velocity 

profile f ( )   is analyzed in Fig. 2b. As expected both the 

velocity profile f ( )   and momentum boundary layer thickness 

are increasing functions of viscoelastic parameter K. In fact 

viscoelastic parameter is inversely proportional to the viscosity 

of the fluid. Higher values of K correspond to a reduction  

in viscosity. Such reduction in viscosity enhances the fluid 

velocity. 

Table 1: Convergence of series solutions for different order of 

approximations when  = K= 0.2, R= n = 0.3, Pr = 1.0,  = 0.5,  

 = 0.4 and 
f

0 .7


   . 

order of approximations -f" (0)  - (0) 

1 0.65289 0.27124 

5 0.65936 0.26148 

10 0.65776 0.26110 

15 0.65760 0.26113 

20 0.65755 0.26114 

25 0.65753 0.26114 

30 0.65753 0.26114 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: ħ- curves for the functions () and (). 

 
From Fig. 2c we examined that the momentum boundary 

layer thickness and velocity field f ( )   increase with an increase 

in . Physically an increase in  implies the addition  

of buoyancy-induced flow onto the external flow and thus 

the velocity increases. Variation of Biot number   on the 

velocity profile f ( )   is analyzed in Fig. 2d. It is observed 

that the velocity profile f ( )   increases when there is  

an increase in . Fig. 2e is drawn to see the impact of 

temperature exponent n on the velocity field f ( )  . It is exposed 

that both the momentum boundary layer thickness and 

the velocity field f ( )   decrease for higher values of n.  

Figs. 3a-3g are sketched to examine the influence of 

curvature parameter , the viscoelastic parameter K, 

mixed convection parameter , Biot number , radiation 

parameter  R, Prandtl number Pr and temperature 

exponent n on the temperature profile (). Fig. 3a shows that 
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Fig. 2: a) Influence of   on the velocity '() when K = 0.2,  = 0.4,  = 0.5, R = 0.3, n = 1.0 and Pr = 0.7. b) Influence of K  

on the velocity '() when  = 0.2,  = 0.4,  = 0.5, R = 0.3, n = 1.0 and Pr = 0.7. c) Influence of  on the velocity  '()  when  

 = 0.2,  = 0.4, K = 0.5, R = 0.3, n = 1.0 and Pr = 0.7. d) Influence of  on the velocity '() when  = 0.2,  = 0.5, K = 0.5, R = 0.3, 

n = 1.0 and Pr = 0.7. e) Influence of n on the velocity '() when  = 0.2,  = 0.5, K = 0.5, R = 0.5, n = 1.0 and Pr = 0.7. 

 

temperature field () decreases near the wall while it 

increases far away from the wall as the curvature 

parameter  increases. This is due to the fact that within 

the increase of  the particles near the wall loses friction 

between the particles. Fig. 3b elucidates that an increase in 

viscoelastic parameter K decreases the temperature and 

thermal boundary layer thickness. Fig. 3c is displayed  

to see the influence of mixed convection parameter   

on the temperature (). It is noted from Fig. that  

the temperature () is decreasing function of . Further, 

we observed that the thermal boundary layer thickness  

also decreases for larger . Variation of Biot number   
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Fig. 3: a) Influence of  on the temperature () when K = 0.2,  = 0.4,  = 0.5, R = 0.3, n = 1.0 and Pr = 0.7. b) Influence of K on 

the temperature () when  = 0.2,  = 0.4,  = 0.5, R = 0.3, n = 1.0 and Pr = 0.7. c) Influence of   on the temperature () when   

= 0.2,  = 0.4,  = 0.5, R = 0.3, n = 1.0 and  Pr = 0.7. d) Influence of  on the temperature () when  = 0.2,  = 0.4, K = 0.5, R = 

0.3, n = 1.0 and Pr = 0.7. e) Influence of Rd on the temperature when K = 0.2,  = 0.4,  = 0.5, n = 1.0 and Pr = 0.7. f) Influence of  

Pr   on the temperature () when  = 0.2,  = 0.5,  = 0.4, K = R = 0.3, and n = 1.0. g) Influence of n on the temperature () when 

 = 0.2,  = 0.5,  = 0.4, K = R = 0.3 and Pr = 0.7. 
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Table 2: Values of local Nusselt number  −(𝟏 +
𝟒

𝟑
𝑹)𝜽′(𝟎)  for different values of , , , n, R, Pr and  . 

 K  Rd Pr  n −(1 +
4

3
𝑅) 𝜃′(0) 

0.0 0.2 0.5 0.3 1.0 0.4 0.3 0.24822 

0.2       0.26114 

0.3       0.26630 

0.2 0.0      0.25928 

 0.2      0.26110 

 0.4      0.26254 

0.2 0.2 0.0     0.25911 

  0.3     0.26039 

  0.5     0.26114 

0.2 0.2 0.5 0.0    0.27381 

   0.3    0.26114 

   0.5    0.25402 

0.2 0.2 0.5 0.3 1.0   0.26114 

    1.5   0.28045 

    2.0   0.29311 

0.2 0.2 0.5 0.3 1.0 0.2  0.15773 

     0.5  0.30070 

     0.7  0.36385 

0.2 0.2 0.5 0.3 1.0 0.4 0.0 0.24362 

      0.5 0.27001 

      1.0 0.28638 

 

on the temperature () is seen in Fig. 3d. It is examined 

that both the temperature () and thermal boundary layer 

thickness increase when Biot number  is increased. This 

is due to the fact that Biot number  is the ratio of internal 

thermal resistance of a solid to the boundary layer thermal 

resistance. Fig. 3e is drawn to analyze the behavior  

of radiation parameter  𝑅  on the temperature profile (). 

Thermal radiation is electromagnetic radiation generated 

by the thermal motion of charged particles in matter.  

All matter with a temperature greater than absolute zero 

emits thermal radiation. The mechanism is that bodies  

with a temperature above absolute zero have atoms or 

molecules with kinetic energies which are changing. These 

changes result in charge-acceleration and/or dipole 

oscillation of the charges that compose the atoms. This 

motion of charges produces electromagnetic radiation  

in the usual way. However, the wide spectrum of this 

radiation reflects the wide spectrum of energies and 

accelerations of the charges in any piece of matter at even 

a single temperature. That's why it is seen in Fig. 3f that  

an increase in radiation parameter  𝑅 gives rise to the 

thermal boundary layer and temperature. To see the 

influence of Prandtl number Pr on the temperature field 

() Fig. 3f is plotted. It is noticed from this Fig. it is examined 

that both the thermal boundary layer and temperature () 

are decreasing functions of Pr. This is due to the fact that 

the Prandtl number is the ratio of momentum and thermal 

diffusivities. An increase in Pr shows lower thermal 

diffusivity. This change in thermal diffusivity causes  

a reduction in energy transfer ability and ultimate  

in the decrease of the thermal boundary layer. Fig. 3g  

is displayed to explore the impact of temperature exponent 

n on the temperature (). It is concluded that the effect of 

n for both the thermal boundary layer and the temperature 

() is similar to that of Prandtl number Pr. Table 2  

is presented to see the numerical values of the local  

Nusselt number  −(1 +
4

3
𝑅) 𝜃′(0). 

The values of the local Nusselt number increase with  
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an increase in curvature parameter ,  viscoelastic parameter 

K, mixed convection parameter , Prandtl number Pr, Biot 

number  and temperature exponent n while it is reduced 

for higher values of radiation parameter  𝑅. 

 

CONCLUSIONS 

This article explores the characteristics of viscoelastic 

fluid in the flow by a stretching cylinder with convective 

boundary conditions. The problem is investigated  

in presence of mixed convection and thermal radiation 

effects. The main points of the presented analysis are: 

● Influences of curvature parameter  and fluid model 

parameter K on the velocity and temperature profiles are 

quite opposite. 

● Effects of mixed convection parameter  on 

momentum and thermal boundary layers are reversed. 

● Features of  and n on the velocity and temperature 

profiles are similar. 

● Thermal boundary layer thickness and temperature  

() decrease with an increase in Pr and n. 

● Local Nusselt number is an increasing function of , 

Pr, n, , K and  while it decreases for  𝑅. 
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