Carbon Aerogel Coated Air-Cathode Bioelectrochemical System for Simultaneous Nitrogen and Phosphorus Removal

Document Type : Research Article

Authors

1 Department of Environment, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Environmental Engineering, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

3 Department of Marine Sciences, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

4 Department of Ceramics, Materials and Energy Research Center (MERC), Karaj, I.R. IRAN

Abstract

Modern bio-electrochemical technologies can convert the energy stored in the chemical bonds of biodegradable organic materials into renewable electrical bioenergy through the catalytic reactions of the microorganisms while treating the wastewaters. The present research has been conducted to study the efficiency of the single-chamber bioelectrochemical system with carbon aerogel catalyst as a new, simple, and inexpensive approach to remove and recover the valuable but polluting nutrients (nitrogen and phosphorus) from municipal wastewaters and also determine the optimal conditions to scale up the system in countries with hot, dry climates. In the present study, the bacterial consortium was isolated from the sediments of local lagoons, and municipal wastewater was used as the substrate. During the six months of cell operation, the effluent of BES showed a 54.9% decrease in nitrate concentration and a 59.8% decrease in total N and 90% of phosphate removed from wastewater, the total nitrogen, and total phosphate concentration in effluent were 28.9 ± 24.3 mg/L. and 13 ± 46.8 mg/L, respectively. The maximum removal of COD was 80%, and the maximum power density was 1.82mW/m2. Carbon aerogel, as a novel material with suitable absorbance and resistance to oxidation by urban wastewater pH can be coated on electrodes to facilitate the Oxidation Reduction reactions and electricity transmission.

Keywords

Main Subjects


[1] Zhang X., Xia X., Ivanov I., Huang X., Logan B.E., Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black, Environ. Sci. Technol., 48: 2075–2081 (2014).
[2] Sustarsic M., Wastewater Treatment Understanding the Activated Sludge. CEP, AIChE Publ.: 26–29 (2009).
[3] Li X., Zheng Y., Nie P., Ren Y., Wang X., Liu Y. Synchronous Recovery of Iron and Electricity Using a Single Chamber Air-Cathode Microbial Fuel Cell, RSC Adv., 7:12503–12510 (2017).
[4] Logan BE., Wallack MJ., Kim KY., He W., Feng Y., Saikaly PE., Assessment of Microbial Fuel Cell Configurations and Power Densities, Environ. Sci. Technol. Lett., 2:206–214 (2015).
[5] Tao Q., Zhou S., Luo J., Yuan J., Nutrient Removal and Electricity Production from Wastewater Using Microbial Fuel Cell Technique, Desalination, 365: 92–98 (2015).
[6] Kelly PT., He Z. Nutrients Removal and Recovery in Bioelectrochemical Systems: A Review, Bioresour. Technol. 153: 351–360 (2014).
[7] Logan B.E., Exoelectrogenic Bacteria that Power Microbial Fuel Cells, Nat. Rev. Microbiol., 7: 375–381 (2009).
[8] Logan BE. Simultaneous Wastewater Treatment and Biological Electricity Generation, Water Sci. Technol., 52: 31–7 (2005).
[9] Rabaey K., Boon N., Siciliano S.D., Verhaege M, Verstraete W. Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer, Appl. Environ. Microbiol., 70: 5373–5382 (2004).
[10] Verstraete W., Rabaey K. Critical Review Microbial Fuel Cells : Methodology and Technology, Environ. Sci. Technol., 40:5181–5192 (2006).
[11] Angelov A., Bratkova S., Loukanov A. Microbial Fuel Cell Based on Electroactive Sulfate-Reducing Biofilm, Energy Convers. Manag., 67:283–286 (2013).
[12] Seo Y., Kang H., Chang S., Lee YY., Cho KS. Effects of Nitrate and Sulfate on the Performance and Bacterial Community Structure of Membraneless Single-Chamber Air-Cathode Microbial Fuel Cell, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 53: 13-24 (2018).
[13] Barua P.K., Deka D. Electricity Generation from Biowaste Based Microbial Fuel Cells, Int. J. Energy Inf. Commun., 1: 77–92 (2010).
[15] Gude VG., Wastewater Treatment In Microbial Fuel Cells - An Overview, J. Clean. Prod., 122: 287–307 (2016a).
[16] Rabaey K., Van de Sompel K., Maignien L., Boon N., Aelterman P., Clauwaert P., De Schamphelaire L., Pham H.T., Vermeulen J., Verhaege M., Lens P., Verstraete W., Microbial Fuel Cells for Sulfide Removal, Environ. Sci. Technol. 40:5218–5224 (2006).
[17] Domagalski J., Lin C., Luo Y., Kang J., Wang S., Brown L.R., Munn M.D., Eutrophication Study at the Panjiakou-Daheiting Reservoir System, Northern Hebei Province, People’s Republic of China: Chlorophyll-a Model and Sources of Phosphorus and Nitrogen.Agricultural Water Management., 94(1–3): 43–53 (2007).
[18] Gude, V.G. Wastewater Treatment in Microbial Fuel Cells – an Overview, Journal of Cleaner Production 122: 287–307 (2016b).
[19] Rodríguez Arredondo M., Kuntke P., Jeremiasse A.W., Sleutels T.H.J.A., Buisman C.J.N., ter Heijne A.,  Bioelectrochemical Systems for Nitrogen Removal and Recovery from Wastewater, Environmental Science: Water Research & Technology, 1(1): 22–33 (2015).
[20] Knowles R., Denitrification. Microbiol. Rev., 46:43–70 (1982).
[21] Jetten M.S.M., Cirpus I., Kartal B., van Niftrik L., van de Pas-Schoonen K.T., Sliekers O., Haaijer S., van der Star W., Schmid M., van de Vossenberg J., Schmidt I., Harhangi H., van Loosdrecht M., Gijs Kuenen J., Op den Camp H., Strous M.,
1994–2004: 10 years of Research on the Anaerobic Oxidation of Ammonium, Biochem. Soc. Trans. 33: 119–123 (2005).
[22] Jetten MS., Wagner M., Fuerst J., van Loosdrecht M., Kuenen G., Strous M., Microbiology and Application of the Anaerobic Ammonium Oxidation ('Anammox’) Process, Curr. Opin. Biotechnol., 12: 283–8 (2001).
[23] Scherson Y.D., Wells G.F., Woo S.-G., Lee J., Park J., Cantwell B.J., Criddle C.S., Nitrogen Removal with Energy Recovery Through N2O Decomposition, Energy Environ. Sci., 6: 241–248 (2013).
[24] Kuntke P., Śmiech K.M., Bruning H., Zeeman G., Saakes M., Sleutels T.H.J.A., Hamelers H.V.M., Buisman C.J.N., Ammonium Recovery and Energy Production From Urine by a Microbial Fuel Cell, Water Res. 46:2627–2636 (2012).
[25] Ichihashi O., Hirooka K. Removal and Recovery of Phosphorus as Struvite from Swine Wastewater Using Microbial Fuel Cell, Bioresour. Technol., 114: 303–307 (2012).
[26] He Z., Kan J., Wang Y., Huang Y., Mansfeld F., Nealson KH., Electricity Production Coupled to Ammonium in a Microbial Fuel Cell, Environ. Sci. Technol., 43: 3391–3397 (2009).
[27] Pant D., Van Bogaert G., Diels L., Vanbroekhoven K. A Review of the Substrates Used In Microbial Fuel Cells (MFCs) for Sustainable Energy Production, Bioresour. Technol., 101:1533–1543 (2010).
[28] Min H., Kim H. Application of Microbial Fuel Cell for the Monitoring and Control of Sulfur-Related Odor Generation, Proc. Int. Conf. Biol. 1: 102–104 (2010).
[30] Pozo Zamora G. Bio-Electrochemical Process for Metal and Sulfur Recovery from Acid Mine Drainage. (The University of Queensland, (2017).
[31] Perazzoli S., De Santana Neto JP., Soares H.M. Prospects in Bioelectrochemical Technologies for Wastewater Treatment, Water Sci. Technol. 78: 1237–1248 (2018).
[32] Zhang X., He W., Zhang R., Wang Q., Liang P., Huang X., Logan B.E., Fellinger T.P., High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells. ChemSusChem 9: 2788–2795 (2016).
[34] Tabrizi NS., Yavari M. Methylene Blue Removal By Carbon Nanotube-Based Aerogels, Chem. Eng. Res. Des., 94:516–523 (2015).
[35] Kalathil S., Patil SA., Pant D., Microbial Fuel Cells: Electrode Materials, "Encyclopedia of Interfacial Chemistry",  Elsevier. 309–318 (2018).
[36] You S., Song Y.S., Bai S.J., Characterization of a Photosynthesis-based Bioelectrochemical Film Fabricated with a Carbon Nanotube Hydrogel, Biotechnol. Bioprocess Eng., 24: 337–342 (2019).
[37] Arenillas A., Menéndez J.A., Reichenauer G., Celzard A., Fierro V., Maldonado Hodar F.J., Bailόn-Garcia E., Job N., "Organic and Carbon Gels", Springer International Publishing (2019).
[38] Cheng S., Liu H., Logan BE., Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure, Electrochem. Commun. 8: 489–494 (2006).
[40] Gude V.G., Kokabian B., Beneficial Bioelectrochemical Systems for Energy, Water, and Biomass Production. J. Microb. Biochem. Technol. (2013).
[41] Wang Z., Mahadevan GD., Wu Y, Zhao F. Progress of Air-Breathing Cathode in Microbial Fuel Cells.  J. Power Sources 356:245–255 (2017).
[42] Zhang T., Bain T.S., Barlett M.A., Dar S.A., Snoeyenbos-West O.L., Nevin K.P., Lovley D.R., Sulfur Oxidation to Sulfate Coupled with Electron Transfer to Electrodes by Desulfuromonas Strain TZ1, Microbiol. (United Kingdom) 160: 123–129 (2014).
[43] Zhao F., Rahunen N., Varcoe J.R., Chandra A., Avignone-Rossa C., Thumser A.E., Slade R.C.T., Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell. Environ. Sci. Technol. 42:4971–4976 (2008).
[44] Koleva R., Yemendzhiev H., Nenov V. Microbial Fuel Cell as a Free-Radical Scavenging Tool. Biotechnol. Biotechnol. Equip. 31: 511–515 (2017).
[45] Editors Rice E.W., Baird R.B., Eaton A.D., Clesceri L.S., "Standard Methods for the Examination of Water and Wastewater” 22nd Edition. American Public Health Association, American Water Works Association, Water Environment Federation ( 2012).
[46] Chen S., Liu G, Zhang R, Qin B., Luo Y., Hou Y. Improved Performance of the Microbial Electrolysis Desalination and Chemical-Production Cell Using the Stack Structure, Bioresour. Technol., 116: 507–511 (2012).
[48] Clauwaert P., Rabaey K., Aelterman P., De Schamphelaire L., Pham T.H., Boeckx P., Boon N., Verstraete W., Biological Denitrification in Microbial Fuel Cells. Environ. Sci. Technol. 41: 3354–3360 (2007).
[49] Yang Y., Li X., Yang X., He Z. Enhanced Nitrogen Removal by Membrane-Aerated Nitritation-Anammox in a Bioelectrochemical System, Bioresour. Technol. 238: 22–29 (2017).
[50] Ohlinger K.N., Young T.M., Schroeder E.D. Predicting Struvite Formation in Digestion, Water Res. 32:3607–3614 (1998).
[51] Cusick R.D., Bruce E.L., Phosphate Recovery as Struvite within a Single Chamber Microbial Electrolysis Cell, Bioresource Technology, 107: 110–15 (2012).
[52] Jiang D., Curtis M., Troop E., Scheible K., McGrath J., Hu B., Suib S., Raymond D., Li B., A Pilot-Scale Study on Utilizing Multi-Anode/Cathode Microbial Fuel Cells (MAC MFCs) to Enhance the Power Production in Wastewater Treatment, Int. J. Hydrogen Energy 36: 876–884 (2011).
[53] Razavi M., Yousefi Kebria D., Electrokinetic and Sediment Remediation in Microbial Fuel Cell. Int. J. Eng. 32, (2019).
[54] David R. Lide, "CRC Handbook of Chemistry and Physics", Taylor & Francis Inc. 88th ed. Bosa Roca, United States, (2007).
[56] Daraee M., Baniadam M., Rashidi A., Maghrebi M. Synthesis of N-CNT-TiO2 Nanocatalyst: Application in Direct Oxidation of H2S to Sulfur, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(5);133-144 (2020).
[57] Zang G.-L., Sheng G.-P., Li W.-W., Tong Z.-H., Zeng R.J., Shi C., Yu H.-Q., Nutrient Removal and Energy Production in a Urine Treatment Process Using Magnesium Ammonium Phosphate Precipitation and a Microbial Fuel Cell Technique, Phys. Chem. Chem. Phys. 14, 1978 (2012).
[58] Niyom W., Komolyothin D., Suwannasilp B.B. Important Role of AbioticSulfide Oxidation in MicrobialFuel Cells Treating High-Sulfate Wastewater. Eng. J. 22, 23–37 (2018).