Synthesis and Optimization of NixMn1-xFe2O4 Catalyst in Chemical Looping Steam Methane Reforming Process

Document Type : Research Article

Authors

1 Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, I.R. IRAN

3 Department of Chemistry, Faculty of Science, Imam Hossein University Tehran, I.R. IRAN

Abstract

The NixMn1-xFe2O4 oxygen carrier is synthesized through the chemical precipitation method to be applied in the Chemical Looping Steam Methane Reforming (CL-SMR) process. The Response Surface Method (RSM) is adopted based on the Central Composite Design (CCD) model to evaluate the effect of the independent variables on the responses’ functionality and to predict the best response volume. The variables: reaction temperature (550-750°C), Oxygen Carrier (OC) loading rate (0.1-0.9), steam per methane ratio (S/C) (1.5-3.5), oxidation-reduction cycles’ count (1-9), and the responses consisting of CH4 conversion percentage, CO/CO2 molar ratio, and H2 production yield are assessed. The analysis of variance (ANOVA) results indicates that reaction temperature and the OC type are the most effective, while the oxidation-reduction cycles’ count is the least effective on CH4 conversion percentage and H2 production yield. By implementing the optimized results in laboratory conditions, it is revealed that the Ni0.6Mn0.4Fe2O4 OC at operating conditions at 650°C, S/C=2.5, and 9 redox cycles, the best response to the CH4 conversion percentage, CO/CO2 molar ratio, and, H2 production yield with 99.6, 15.7, and 77.6, respectively. The improved stability and functionality of the OC reveal that during the 24 redox cycle the self-supported Ni0.6Mn0.4Fe2O4 OC is of high stability, high CH4 conversion percentage means, and high H2 production yield. The OCs samples are characterized by applying FT-IR, XRD, FESEM with X-ray spectroscopy EDX, BET, and TGA.

Keywords

Main Subjects


[1] Udomchoke T., Wongsakulphasatch S., Kiatkittipong W., Arpornwichanop A., Khaodee W., Powell J., Performance Evaluation of Sorption Enhanced Chemical-Looping Reforming for Hydrogen Production from Biomass with Modification of Catalyst and Sorbent Regeneration, Chem. Eng. J., 303: 338-347 (2016).
[2] Mehrypooya M., Moftakhari Sharifzadeh M., Design of an Integrated Process for Simultaneous Chemical Looping Hydrogen Production and Electricity Generation with CO2 Capture, International Journal of Hydrogen Energy, 42(12). 8486-8496 (2017).
[4] Nadgouda S.G., Kathe M.V., Fan L.S., Cold Gas Efficiency Enhancement in a Chemical Looping Combustion System Using Staged H2 Separation Approach, International Journal of Hydrogen Energy, 42(8): 4751-4763 (2017).
[6] Luo M., Yi Y., Wang S., Wang Z., Du M., Pan J., Wang Q., Article Review of Hydrogen Production Using Chemical-Looping Technology, Renewable and Sustainable Energy Reviews, 81: 3186-3214 (2018).
[8] Zhongliang Y., Yang Y., Yang S., Zhang Q., Zhao J., Fang Y., Guan G., Iron-based Oxygen Carriers in Chemical Looping Conversions: A Review, Carbon Resour. Convers., (2018).
[9] Forutan H.R., Karimi E., Hafizi A., Rahimpour M.R., Keshavarz P., Expert Representation Chemical Looping Reforming: A Comparative Study of Fe, Mn, Co and Cu as Oxygen Carriers Supported on Al2O3, J. Ind. Eng. Chem., 21: 900–911 (2015).
[11] Miller D.D., Siriwardane R., Poston J., Fluidized-Bed and Fixed-Bed Reactor Testing of Methane Chemical Looping Combustion with MgO-Promoted Hematite, Applied Energy, 146: 111-121 (2015).
[13] Huang Z., He F., Chen D., Zhao K., Wei G., Zheng A., Li H., Investigation on Reactivity of Iron-Nickel Oxides in Chemical Looping Dry Reforming, Energy, 116: 53-63 (2016).
[14] Zhu M., Song Y., Chen S., Li M., Zhang L., Xiang W., Chemical Looping Dry Reforming of Methane with Hydrogen Generation on Fe2O3/Al2O3 Oxygen Carrier, Chem. Eng. J., 368: 812–823 (2019).
[15] Lin C., Qin W., Dong C., Reduction Effect of α-Fe2O3 on Carbon Deposition and CO Oxidation During Chemical-Looping Combustion, Chem. Eng. J., 301: 257–265 (2016).
[16] Huang J., Liu W., Hu W., Metcalfe I., Yang Y., Liu B., Phase Interactions in Ni-Cu-Al2O3 Mixed Oxide Oxygen Carriers for Chemical Looping Applications, Appl. Energy, 236: 635-647 (2019).
[17] Huang Z., Jiang H., He F., Chen D., Wei G., Zhao K., Li H., Evaluation of Multi-Cycle Performance of Chemical Looping Dry Reforming Using CO2 as an Oxidant with Fe-Ni Bimetallic Oxides, J. Energy Chem., 25(1): 62–70 (2016).
[18] Evdou A., Zaspalis V., Nalbandian L., Ferrites as Redox Catalysts for Chemical Looping Processes, Fuel, 165: 367–378 (2016).
[19] Aston V.J., Evanko B.W., Weimer A.W., Investigation of Novel Mixed Metal Ferrites for Pure H2 and CO2 Production Using Chemical Looping, Int. J. Hydrogen Energy, 38(22): 9085–9096 (2013).
[20] Ismail M., Liu W., Dunstan M.T., Scott S.A., Development and Performance of Iron-Based Oxygen Carriers Containing Calcium Ferrites for Chemical Looping Combustion and Production of Hydrogen, International Journal of Hydrogen Energy, 41(7): 4073-4084 (2016).
[21] Ma S., Chen S., Soomro A., Xiang W., Effects of Supports on Hydrogen Production and Carbon Deposition of Fe-Based Oxygen Carriers in Chemical Looping Hydrogen Generation, International Journal of Hydrogen Energy, 42(16): 11006–11016 (2017).
[22] De Vos Y., Jacobs M., Van Der Voort P., Van Driessche I., Snijkers F., Verberckmoes A., Sustainable Iron-Based Oxygen Carriers for Chemical Looping for Hydrogen Generation, Int. J. Hydrogen Energy, 44(3): 1374-1391 (2019).
[23] Nadgouda S.G., Guo M., Tong A., Fan L.-S., High Purity Syngas and Hydrogen Coproduction Using Copper-Iron Oxygen Carriers in Chemical Looping Reforming Process, Appl. Energy, 235: 1415–1426 (2019).
[24] Chen J., Zhao K., Zhao Z., He F., Huang Z., Wei G., Identifying the Roles of MFe2O4 (M= Cu, Ba, Ni, and Co) in the Chemical Looping Reforming of Char, Pyrolysis Gas and Tar Resulting from Biomass Pyrolysis, Int. J. Hydrogen Energy, 44(10): 4674-4687 (2019).
[25] Liu F., Liu J., Yang Y., Wang Z., Zheng C., Reaction Mechanism of Spinel CuFe2O4 with CO During Chemical-Looping Combustion: an Experimental and Theoretical Study,” Proc. Combust. Inst., 37(4): 4399-4408 (2019).
[26] Pérez-Vega R., Abad A., Izquierdo M.T., Gayán P., de Diego L.F., Adánez J., Evaluation of Mn-Fe mixed Oxide Doped with TiO2 for the Combustion with CO2 Capture by Chemical Looping Assisted by Oxygen Uncoupling, Appl. Energy, 237: 822–835 (2019).
[27] Källén M., Rydén M., Lyngfelt A., Mattisson T., Chemical-Looping Combustion Using Combined Iron/Manganese/Silicon Oxygen Carriers, Appl. Energy, 157: 330-337 (2015).
[28] Fernández Garcia J. R., Martinez I., Abanades Garcia J.C., Romano M.C., “Conceptual Design of a Ca-Cu Chemical Looping Process for Hydrogen Production in Integrated Steelworks, Int. J. Hydrogen Energy, 42(16): 11023-11037 (2017).
[29] Ortiz M., Gayán P., Luis F., García-Labiano F., Abad A., Pans M.A., Adánez J., Hydrogen Production With CO2 Capture by Coupling Steam Reforming of Methane and Chemical-Looping Combustion: Use of an Iron-Based Waste Product as Oxygen Carrier Burning a PSA Tail Gas, Journal of Power Sources, 196(9): 4370-4381 (2011).
[30] Hallberg P., Hanning M., Rydén M., Mattisson T., Lyngfelt A., Investigation of a Calcium Manganite as Oxygen Carrier During 99 h of Operation of Chemical-Looping Combustion in a 10 kWth Reactor Unit, International Journal of Greenhouse Gas Control, 53: 222–229 (2016).
[31] Kuo P.-C., Chen J.-R., Wu W., Chang J.-S., Hydrogen Production from Biomass Using Iron-Based Chemical Looping Technology: Validation, Optimization, and Efficiency, Chem. Eng. J., 337: 405-415 (2018).
[32] Patcharavorachot Y., Chatrattanawet N., Arpornwichanop A., Assabumrungrat S., Optimization of Hydrogen Production from Three Reforming Approaches of Glycerol via Using Supercritical Water with in Situ CO2 Separation, Int. J. Hydrogen Energy, 44(4): 2128–2140 (2019).
[33] Fard A.A., Arvaneh R., Alavi S. M., Bazyari A., Valaei A., Propane Steam Reforming over Promoted Ni-Ce/MgAl2O4 Catalysts: Effects of Ce Promoter on the Catalyst Performance Using Developed CCD Model, Int. J. Hydrogen Energy, 44(39): 21607–21622 (2019).
[34] Maaz K., Duan J. L., Karim S., Chen Y. H., Zhai P. F., Xu L.J., Liu J., Fabrication and Size-Dependent Magnetic Studies of NixMn1- xFe2O4 (x= 0.2) Cubic Nanoplates, J. Alloys Compd., 684: 656–662 (2016).
[35] Sun Y., Diao Y., Wang H., Chen G., Zhang M., Guo M., Synthesis, Structure and Magnetic Properties of Spinel Ferrite (Ni, Cu, Co) Fe2O4 from Low Nickel Matte, Ceram. Int., 43(18): 16474–16481 (2017).
[36] Patterson A.L., The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev., 56(10):978- (1939).
[38] Stoia M., Muntean E., Puacurariu C., Mihali C., Thermal Behavior of MnFe2O4 and MnFe2O4/C Nanocomposite Synthesized by a Solvothermal Method, Thermochim. Acta, 652: 1–8 (2017).
[39] Hafizi A., Rahimpour M. R., Hassanajili S., Calcium Promoted Fe/Al2O3 Oxygen Carrier for Hydrogen Production via Cyclic Chemical Looping Steam Methane Reforming Process, Int. J. Hydrogen Energy, 40(46): 16159-16168 (2015).
[41] Forutan H.R., Karimi E., Hafizi A., Rahimpour M.R., Keshavarz P., Expert Representation Chemical Looping Reforming: A Comparative Study of Fe, Mn, Co and Cu as Oxygen Carriers Supported on Al2O3, J. Ind. Eng. Chem., 21: 900–911 (2015).
[43] Hafizi A., Rahimpour M. R., Hassanajili S., Hydrogen Production by Chemical Looping Steam Reforming of Methane over Mg Promoted Iron Oxygen Carrier: Optimization Using Design of Experiments, J. Taiwan Inst. Chem. Eng., 62: 140–149 (2016).
[44] Hafizi A., Ahmadpour A., Heravi M.M., Bamoharram F.F., Khosroshahi M., Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology, Chinese J. Catal., 33(2–3): 494–501 (2012).
[45] Hafizi A., Ahmadpour A., Koolivand-Salooki M., Heravi M. M., Bamoharram F. F., Comparison of RSM and ANN for the Investigation of Linear Alkylbenzene Synthesis over H14 [NaP5W30O110]/SiO2 Catalyst, J. Ind. Eng. Chem., 19(6): 1981–1989 (2013).
[46] Alirezaei I., Hafizi A., Rahimpour M.R., Syngas Production In Chemical Looping Reforming Process over ZrO2 Promoted Mn-Based Catalyst, J. CO2 Util., 23: 105–116 (2018).
[47] Frick V., Rydén M., Leion H., Investigation of Cu-Fe and Mn-Ni Oxides as Oxygen Carriers for Chemical-Looping Combustion, Fuel Process. Technol., 150: 30-40 (2016).
[49]  Meshksar M., Daneshmand-Jahromi S., Rahimpour M.R., Synthesis and Characterization of Cerium Promoted Ni/SBA-16 Oxygen Carrier in Cyclic Chemical Looping Steam Methane Reforming, J. Taiwan Inst. Chem. Eng., 76: 73–82 (2017).
[50] Dou B., Song Y., Wang C., Chen H., Yang M., Xu Y., Hydrogen Production by Enhanced-Sorption Chemical Looping Steam Reforming of Glycerol in Moving-Bed Reactors, Appl. Energy, 130: 342–349 (2014).
[51] Akbari-Emadabadi S., Rahimpour M. R., Hafizi A., Keshavarz P. Production of Hydrogen-Rich Syngas Using Zr Modified Ca-Co Bifunctional Catalyst-Sorbent in Chemical Looping Steam Methane Reforming, Appl. Energy, 206: 51-62 (2017).
[52] Pena J.A., Lorente E., Romero E., Herguido J., Kinetic Study of the Redox Process for Storing Hydrogen: Reduction Stage, Catal. today, 116(3): 439-444 (2006).
[53] Ma S., Chen S., Soomro A., Xiang W., Effects of Supports on Hydrogen Production and Carbon Deposition of Fe-Based Oxygen Carriers in Chemical Looping Hydrogen Generation, Int. J. Hydrogen Energy, 42(16): 11006-11016 (2017).
[54] Ayodele B.V., Ghazali A.A., Yassin M.Y.M., Abdullah S., Optimization of Hydrogen Production by Photocatalytic Steam Methane Reforming over Lanthanum Modified Titanium (IV) Oxide Using Response Surface Methodology, Int. J. Hydrogen Energy, 44(37): 20700-20710 (2019).
[55] Zhang Y., Wang W., Wang Z., Zhou X., Wang Z., Liu C.-J., Steam Reforming of Methane over Ni/SiO2 Catalyst with Enhanced Coke Resistance at Low Steam to Methane Ratio, Catal. Today, 256: 130-136 (2015).
[56] Cheng D., Zhu X., Ben Y., He F., Cui L., Liu C., Carbon Dioxide Reforming of Methane over Ni/Al2O3 Treated with Glow Discharge Plasma, Catal. Today, 115(1-4): 205-210 (2006).
[57] Zhai X., Ding S., Liu Z., Jin Y., Cheng Y., Catalytic Performance of Ni Catalysts for Steam Reforming of Methane at High Space Velocity, Int. J. Hydrogen Energy, 36(1): 482-489 (2011).
[58] Urasaki K., Sekine Y., Kawabe S., Kikuchi E., Matsukata M., Catalytic Activities and Coking Resistance of Ni/Perovskites in Steam Reforming of Methane, Appl. Catal. A Gen., 286(1): 23-29 (2005).
[60] Zhao K., Li L., Zheng A., Huang Z., He F., Shen Y., Zhao Z., Synergistic Improvements in Stability and Performance of the Double Perovskite-Type Oxides La2- xSrxFeCoO6 for Chemical Looping Steam Methane Reforming, Appl. Energy, 197: 393-404 (2017).‏
[61] Zhao K., He F., Huang Z., Wei G., Zheng A., Li H., Zhao Z., Perovskite-Type Oxides LaFe1- xCoxO3 for Chemical Looping Steam Methane Reforming to Syngas and Hydrogen co-Production, Appl. Energy, 168: 193-203 (2016).