Synthesis of Novel Poly-substituted Quinolin-7-ones via Friedländer Hetero-Annulation Reaction from Anthranilic Acid and Flavanone Derivatives

Document Type : Research Article

Authors

Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, I.R. IRAN

Abstract

Novel poly-substituted quinolin-7-one derivatives have been synthesized using Friedländer hetero-annulation reaction from anthranilic acid and flavanone derivatives catalyzed by nano-zinc oxide. Using eco-friendly Nano-catalyst led to mild reaction conditions and increasing in converted yields. Heterogeneous media makes easy work-up and high isolated yields. The use of ethanol as a green and environmental solvent is the other advantage of this method. Our studies were shown that steric factors have been found to be important in the formation of the desired product. Good and excellent yield (50-97%) was obtained for corresponding compounds. Characterization of products was performed by FT-IR, 1H- and 13C-Nuclear Magnetic Resonance spectroscopies, and elemental analysis. The retention factor, Rf, and melting point for these desired products were determined.  

Keywords

Main Subjects


[1] Hesse M., "Alkaloids: Nature’s Curse or Blessing?", Wiley- VCH, New-York, (2002).
[2] Ahmed E., Arshad M., Zakriyya Khan M., Shoaib Amjad H., Mehreen Sadaf H., Riaz I., Sabir S., Ahmad N., Sabaoon M. A., Secondary Metabolites and Their Multidimensional Perspective in Plant Life. J. Pharmacogn. Phytochem. 6: 205-214 (2017).
[3] Jones G., "Comprehensive Heterocyclic Chemistry II", Vol. 5 (Eds: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon: New York, Pyridines and Their Benzoderivatives Synthesis,(1996).
     (b) Mansake R. H., Kulka M., The Skraup Synthesis of Quinolones, Org. React., 7: 59-61 (1953).
     (c) Linderman R. J., Kirollos S. K., Reactions of Diphenyldiazomethane In The Presence of Bis(acetylacetonato) Copper (II). Modified Diphenylmethylene Reactions, Tetrahedron Lett., 31: 2689-2692 (1990).
        (d) Theclitou M. E., Robinson L. A., Novel Facile Synthesis of 2,2,4 Substituted 1,2-dihydroquinolines via a Modified Skraup Reaction, Tetrahedron Lett. 43: 3907-3910 (2002).
[5] (a) Cheng C. C., Yan S. J., The Friedländer Synthesis of Quinolines. Org. React. 28: 37-201(1982).
      (b) Shiri M., Momahed Heravi M., Zadsirjan V., Najatinezhad Arani A., Pseudo-Five-Component Condensation for the Diversity-Oriented Synthesis of Novel Indoles and Quinolines Containing Pseudo-Peptides (Tricarboxamides), Iran. J. Chem. Chem. Eng (IJCCE)., 37: 101-115 (2018).
[6] Gladiali S., Chelucci G., Mudadu M. S., Gastaut M. A., Thummel R. P., Friedländer Synthesis of Chiral Alkyl-Substituted 1,10-Phenanthrolines, J. Org. Chem., 66: 400-405 (2001).
[7] Arcadi A., Chiarini M., Giuseppe S. D., Marinelli F., A New Green Approach to the Friedländer Synthesis of Quinolines. Synlett., 2: 203-207 (2003).
[8] Yadav J. S., Reddy B. V. S., Sreedhar P., Srinivasa R. R., Nagaiah K., Silver Phosphotungstate: A Novel and Recyclable Heteropoly Acid for Friedländer Quinolone Synthesis, Synthesis, 2381- 2385 (2004).
[9] Yadav J.S., Rao P.P., Sreenu D., Rao R.S., Kumar V. N., Nagaiah K., Prasad A. R., Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett., 46: 7249-7253 (2005).
[10] Zolfigol M. A., Salehi P., Ghaderi A., Shiri M., Tanbakouchian Z., An Eco-Friendly Procedure for the Synthesis of Polysubstituted Quinolines under Aqueous Media. J. Mol. Catal. A: Chem., 259: 253-258 (2006).
[11] Narasimhulu M., Reddy T. S., Mahesh K. C., Prabhakar P., Rao C. B., Venkateswarlu Y. J., Silica Supported Perchloric Acid: A Mild and Highly Efficient Heterogeneous Catalyst for the Synthesis of Poly-Substituted Quinolines Via Friedländer Hetero-Annulation. J. Mol. Catal. A: Chem., 266: 114- 117 (2007).
[13] Soleimani E., Khodaei M. M., Batooie N., Samadi S., An efficient Approach to Quinolines via Friedländer Synthesis Catalyzed by Cuprous Triflate, Chem. Pharm. Bull., 58: 212-213 (2010).
[14] Rubio‐Presa R., Suárez‐Pantiga S., Pedrosa M. R., Sanz R., Molybdenum‐Catalyzed Sustainable Friedländer Synthesis of Quinolones, Adv. Synth. Catal., 360: 2216-2220 (2018).
[15] Vasco F., Batista D.C.G.A.P., Artur M.S., Synthesis of Quinolines: A Green Perspective. ACS Sustain. Chem. Eng., 4: 4064-4078 (2016).
[17] Prado S., Janin Y. L., Saint-Joanis B., Brodin P., Michel S., Koch M., Cole S. T., Tillequin F., Bost P. E., Synthesis and Antimycobacterial Evaluation of Benzofurobenzopyran Analogues, Bioorg. Med. Chem., 15: 2177-2186 (2006). 
[19] Hsiao Y. C., Kuo W.H., Chen P.N., Chang H.R., Lin T.H., Yang W.E., Hsieh Y.S., Chu S.C., Flavanone and 2′-OH flavanone Inhibit Metastasis of Lung Cancer Cells via Down-Regulation of Proteinases Activities and MAPK Pathway, Chem. Biol. Interact., 167: 193-206 (2007).
[20] Mughal E.U., Ayaz M., Hussain Z., Hasan A., Sadiq A., Riaz M., Malik A., Hussain S., Choudhary M.I., Synthesis and Antibacterial Activity of Substituted Flavones, 4-Thioflavones and 4-Iminoflavones. Bioorg. Med. Chem., 14: 4704-4711 (2006).
[21] Chen I.L., Chen J.Y., Shieh P.C., Chen J.J., Lee C.H., Juang S.H., Wang T.C., Synthesis and Antiproliferative Evaluation of Amide-Containing Flavone and Isoflavone Derivatives, Bioorg. Med. Chem., 16: 7639-7645 (2008).
[22] Lin Y. M., Zhou Y., Flavin M. T., Zhou L.M., Nie W., Chen F.C., Chalcones and Flavonoids as Anti-Tuberculosis Agents, Bioorg. Med. Chem., 10: 2795-2802 (2002).
[24] Koufaki M., Kiziridi C., Papazafiri P., Vassilopoulos A., Varro A., Nagy Z., Farkas A., Makriyannis A., Synthesis and Biological Evaluation of Benzopyran Analogues Bearing Class III Antiarrhythmic Pharmacophores, Bioorg. Med. Chem., 14: 6666- 6678 (2006). 
[25] Orhan D.D., Özçelik B., Özgen S., Ergun F., Antibacterial, Antifungal, and Antiviral Activities of Some Flavonoids, Microbiol. Res., 165: 496-504 (2010). 
[26] Chanet A., Milenkovic D., Manach C., Mazur A., Morand C., Citrus Flavanones: What Is Their Role in Cardiovascular Protection? J. Agric. Food. Chem., 60: 8809-8822 (2012).
[27] Kumar B. V., Bhojya Naik H. S., Girija D., Kumar B. V., ZnO Nanoparticle as Catalyst for Efficient Green One-Pot Synthesis of Coumarins Through Knoevenagel Condensation, J. Chem. Sci. 123: 615-621 (2011).
[28] Hamood S., Azzam S., Siddekha A., Pasha M. A., One-Pot Four-Component Synthesis of Some Novel Octahydroquinolindiones Using ZnO as an Efficient Catalyst in Water, Tetrahedron Lett., 53: 6306-6309 (2012).
[29] Rajendran R., Balakumar C., Ahammed H. A. M., Jayakumar S., Vaideki K., Rajesh M. R., Use of Zinc Oxide Nanoparticles for Production of Antimicrobial Textiles. Int. J. Eng. Sci. Technol. 2: 202-208 (2010).
[30] Battez A. H., Gonzalez R., Viesca J. L., Fernandez J. E., Dıaz Fernandez J. M., Machadoc A., Choud R., Riba J., CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants, Wear., 265: 422-428 (2008).
[31] Darvish M., Moradi Dehaghi S., Taghavi L., Karbassi A.R., Removal of Nitrate Using Synthetic Nano Composite ZnO/Organoclay: Kinetic and Isotherm Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 39: 105-118 (2020).
[32] Ghassamipour S., Shabani Y., Design and Synthesis of Novel α-Substituted Phosphonic Acids Catalyzed by Nano Zinc Oxide, Phosphorus Sulfur Silicon Relat Elem., 191: 898-903 (2016).
[33] Zarei M., Ghassamipour S., Nano Catalytic Synthesis of Flavanone Phosphonates Using Domino Knoevenagel-Phospha-Michael Route, Phosphorus Sulfur Silicon Relat Elem., 193: 865-870 (2018).