Photocatalytic Degradation of Ethylbenzene by Nano Photocatalyst in Aerogel form Based on Titania

Document Type : Research Article

Authors

1 Faculty of Nanotechnology, Semnan University, Semnan, I.R. IRAN

2 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, I.R. IRAN

Abstract

In this study, a composite of Cu, N co-doped TiO2@SiO2 aerogel as a photocatalyst with enhanced optical absorption in the visible region as well as high specific surface area was synthesized by the sol-gel method and ambient pressure drying process for degradation of Ethylbenzene. The physicochemical properties of the photocatalyst were examined by X-Ray Powder Diffraction, Scanning Electron Microscope, Photoluminescence, Fourier Transform Infrared Spectroscopy, Diffuse Reflectance Spectroscopy, Brouner Emmet Teller Isotherm/Barrett Joyner Halenda analysis. The structure of samples consisted of titanium dioxide crystalline phases in the dominant phase of the rutile and the amorphous structure of silica. The appearance of the Ti-O-Si peak confirmed the formation of TiO2@SiO2 composite. Based on the results of the characterization analysis, the type and concentration of dopants can be effective on the crystalline structure, bandgap energy, particle size, specific surface area, and the recombination of charge carriers. The sample contains 3 at. % of copper and nitrogen was able to degrade Ethylbenzene more efficiently in comparison with mono-doped TiO2@SiO2 nanocomposite under visible-light irradiation. The synergistic effects of Cu and N co-dopants were responsible for strong visible light absorption and effective separation of electron/hole.

Keywords

Main Subjects


[2] Bahramian A. R., Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 nanostructured Thin Film, Iran. J. Chem. Chem. Eng., 35: 27-41 (2016).
[3] Zatloukalová K., Obalová L., Kočí K., Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized TiO2 Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 29-38 (2017).
[5] Zu G., Shen J., Wang W., Zou L., Lian Y., Zhang Z., Silica-Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of  Titania onto Nanoporous Silica Scaffolds, Appl. Mater. Interfaces, 7: 5400–5409 (2015).
[6] Etacheri V., Roshan R., Kumar V., Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis, Appl. Mater. Interfaces, 4 (5): 2717-2725 (2012).
[7] Niu X., Yu J., Wang L., Fu C., Wang J., Wang L., Zhao H., Yang J., Enhanced Photocatalytic Performance of TiO2 Nanotube-Based Heterojunction Photocatalyst Via the Coupling of Grapheme and FTO, Appl. Surf. Sci., 413: 7–15 (2017).
[8] Meng A., Zhu B., Zhong B., Zhang L., Cheng B., Direct Z-Fig. TiO2/CdS Hierarchical Photocatalyst For Enhanced Photocatalytic H2-production Activity, Appl. Surf. Sci., 422: 518–527 (2017).
[12] Ramacharyulu P.V.R.K., Nimbalkar D.B., Kumar J.P., Prasad G.K., Chu Ke Sh., N-doped, S-doped TiO2 Nanocatalysts: Synthesis, Characterization and Photocatalytic Activity in the Presence of Sunlight, RSC Adv., 5: 37096-37101 (2015).
[14] Cheng G., Xu F., Stadler F.J., Chen R., A facile and General Synthesis Strategy to Doped TiO2 Nanoaggregates with Mesoporous Structure and Comparable Property, RSC Adv., 5: 64293-64298 (2015).
[15] Hojat Ansari S., Giahi M., Photochemical Degradation of Fluocinolone Acetonidin Drug in Aqueous Solutions Using Nanophotocatalyst ZnO Doped by C, N, and S, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 183-189 (2017).
[16] Dong H., Zeng G., Tang L., Fan C., Zhang C., He X., He Y., An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures, Water Res., 79: 128–146 (2015).
[17] Jaiswal R., Patel N., Kothari D.C., Miotello A., Improved Visible Light Photocatalytic Activity of TiO2 co-Doped with Vanadium and Nitrogen, Appl. Catal. B., 126: 47–54 (2012). 
[18] Gnanaprakasam A. J., Sivakumar V. M., Thirumarimurugan M., Investigation of Photocatalytic Activity of Nd-doped ZnO Nanoparticles Using Brilliant Green Dye: Synthesis and Characterization, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 61-71 (2018).
[20] Jaiswal R., Bharambe J., Patel N., Alpa D., Kothari D.C., Miotello A., Copper and Nitrogen co-doped TiO2 Photocatalyst with Enhanced Optical Absorption and Catalytic Activity, Appl. Catal. B., 168: 333–341 (2015).
[21] Rimoldi L., Ambrosi C., Di Liberto G., Lo Presti L., Ceotto M., Oliva C., Meroni D., Cappelli S., Cappelletti G., Soliveri G., Ardizzone S., Impregnation Versus Bulk Synthesis: How the Synthetic Route Affects the Photocatalytic Efficiency of Nb/Ta: N Co-doped TiO2 Nanomaterials, J. Phys. Chem. C., 119 (42): 24104-24115 (2015).
[22] Bloh J.Z., Folli A., Macphee D.E., Adjusting Nitrogen Doping Level in Titanium Dioxide by Codoping with Tungsten: Properties and Band Structure of the Resulting Materials, J. Phys. Chem. C., 118 (36): 21281-21292 (2014).
[23] Koteski V., Belošević-Čavor J., Umićević A., Ivanovski V., Toprek D., Improving the Photocatalytic Properties of Anatase TiO2 (101) Surface by co-doping with Cu and N: Ab Initio Study, Appl. Surf. Sci. 425: 1095-1100 (2017).
[25] Cinthia G., Guevara A., Iliana E., Ramírez M., Hernández-Ramírez A., Jáuregui-Rincón J., Antonio Lozano-Álvarez J., Luis Rodríguez-López J., Comparison of Two Synthesis Methods on the Preparation of Fe, N-Co-doped TiO2 Materials for Degradation of Pharmaceutical Compounds under Visible Light, Ceram. Int., 43 (6): 5068-5079 (2017).
[26] Taherinia M., Nasiri M., Abedini E., Pouretedal H.R., Comparing the Photocatalytic Activity of N-Doped And S-Doped Titanium Dioxide Nanoparticles for Water Splitting Under Sunlight Radiation, J. Iran. Chem. Soc., 15: 1301 (2018).
[27] Wang S., Yang X.J., Jiang Q., Lian J.S., Enhanced Optical Absorption And Photocatalytic Activity of Cu/N-Codoped TiO2 Nanocrystals, Mater. Sci. Semiconductor. Process, 24: 247–253 (2014).
[28] Pal A., Jana T.K., Chatterjee K., Silica Supported TiO2 Nanostructures for Highly Efficient Photocatalytic Application Under Visible Light Irradiation, Mater. Res. Bull., 76: 353–357 (2016).
[29] Zhu J., Xie J., Chen M., Jiang D., Wu D., Low-Temperature Synthesis of Anatase Rare Earth Doped Titania-Silica Photocatalyst and its Photocatalytic Activity under Solar-Light, Colloids. Surf. A.: Physicochem. Eng. Aspects, 355: 178–182 (2010).
[30] Jiang R., Zhu H.Y., Li J.B., Fu F.Q., Yao J., Liang X.X., Guo R.Q., Zeng G.M., Efficient Solar Photocatalyst Based on Ag3PO4/Graphene Nanosheets Composite for Photocatalytic Decolorization of Dye Pollutants, J. Iran. Chem. Soc., 13: 1167 (2016).
[31] Young Lee K., Min Park S., Beom Kim J., El Saliby I., Shahid M., Kim G.J., Kyong Shon H., Kim J.H., Synthesis and Characterisation of Porous Titania-Silica Composite Aerogel for NOx and Acetaldehyde Removal, J. Nanosci. Nanotechnol., 16: 4505–4511 (2016). 
[32] Mermer N.K., Sari Yilmaz M., Dere Ozdemir O., Burcin Piskin M., The Synthesis of Silica-Based Aerogel from Gold Mine Waste for Thermal Insulation, J. Therm. Anal. Calorim., 129 (2): 1807-1812 (2017).
[33] Powers S.E., Hunt C.S., Heermann S.E., Corseuil H.X., Rice D., Alvarez P.J.J., The Transport And Fate of Ethanol and BTEX in Groundwater Contaminated by Gasohol, Crit. Rev. Environ. Sci. Technol., 31:79–123 (2001).
[34] Cui H., Gu X., Lu Sh., Fu X., Zhang X., Fu G.Y., Qiu Zh., Sui Q., Degradation of Ethylbenzene in Aqueous Solution by Sodium Percarbonate Activated with EDDS–Fe(III) Complex, Chem. Eng. J., 309: 80–88 (2017).
[35] Sostaric A., Stojic A., Stojic S., Grzeti I., Quantification and Mechanisms of BTEX Distribution Between Aqueous and Gaseous Phase in a Dynamic System, Chemosphere, 144: 721-727 (2016).
[36] www.europarl.europa.eu
[37] Kim Y.N., Shao G.N., Jeon S.J., Imran S.M., Sarawade P.B., Kim H.T., Sol-Gel Synthesis of Sodium Silicate and Titanium Oxychloride Based TiO2–SiO2 Aerogels and their Photocatalytic Property under UV Irradiation, Chem. Eng. J., 231: 502–511 (2013).
[38] Yu Y., Zhu M., Liang W., Rhodes S., Fang J., Synthesis of Silica-Titania Composite Aerogel Beads for the Removal of Rhodamine B in Water, RSC Adv., 5: 72437-72443 (2015).
[39] www.preview-nanoscalereslett.springeropen.com
[40] Munir Sh., Shah S.M., Hussain H., Ali khan R., Effect of Carrier Concentration on the Optical Band Gap of TiO2 Nanoparticles, Mater. Des., 92: 64–72 (2016).
[41] Chan Wai S., Ching Juan J., Wei Lai Ch., Bee Abd Hamid Sh., Yusop R.M., Fe-doped Mesoporous Anatase-Brookite Titania in the Solar-Light-Induced Photodegradation of Reactive Black 5 Dye, J. Taiwan. Inst. Chem. Eng., 68: 153-161 (2016).
[42] Shamsa M., Shah S.M., Hussain H., Ali khan R., Effect of Carrier Concentration on the Optical Band Gap of TiO2 Nanoparticles, Mater. Des., 92: 64-72 (2016).
[43] Kittel C., “Introduction to Solid State Physics”, John Wiley & Sons, Inc., (2005).
[44] Bensouici F., Bououdina M., Dakhel A.A., Tala-Ighil R., Tounane M., Iratni A., Souier T., Liu S., Cai W., Optical, structural and Photocatalysis Properties of Cu-Doped TiO2 Thin Films, Appl. Surf. Sci., 395: 110–116 (2017).
[45] Valentin C.D., Pacchioni G., Selloni A., Origin of the Different Photoactivity of N-Doped Anatase and Rutile TiO2, Phys. Rev. B., 70: 085116 (2004).
[46] Vittoria Dozzi M., Selli E., Doping TiO2 with p-block Elements: Effects on Photocatalytic ActivityJ. Photochem. Photobiol. C., 14 (1): 13-28 (2013).
[48] Senthilnathan J., Philip L., Photocatalytic Degradation of Lindane under UV and Visible Light Using N-Doped TiO2, Chem. Eng. J.,161: 83–92 (2010).
[49] Wei W., Lü X., Jiang D., Zaoxue Y., Chen M., Xie J., A Novel Route for Synthesis Of UV-resistant Hydrophobic Titania-Containing Silica Aerogels by Using Potassium Titanate as Precursor, Dalton Trans., 43: 9456 (2014).
[50] Hongquan J., Wang Q., Zang Sh., Li J., Wang Q., Enhanced Photoactivity of Sm, N, P-Tridoped Anatase-TiO2 Nano-Photocatalyst for 4-Chlorophenol Degradation inder Sunlight Irradiation, J. Hazard. Mater., 261: 44-54 (2013).
[51] Colon G., Maicu M., Hidalgo M.C., Navio J.A., Cu-Doped TiO2 Systems with Improved Photocatalytic Activity, Appl. Catal. B., 67: 41-51 (2006).
[52] Xia X., Gao Y., Wang Z., Jia Z.J., Structure and Photocatalytic Properties Of Copper-Doped Rutile, TiO2 Prepared by a Low-Temperature ProcessJ. Phys. Chem. Solids., 69: 2888–2893 (2008).
[53] Yadav M., Otari V., Koli B., Mali S., Hong Ch.K., Pawar H., Delekar D., Preparation and Characterization of Copper-Doped Anatase TiO2 Nanoparticles with Visible Light Photocatalytic Antibacterial  Activity, J. Photochem. Photobio.l A., 280: 32–38 (2014).
[54] Li Z.D., Wang H.L., Wei X.N., Liu X.Y., Yang Y.F., Jiang W.F., Preparation and Photocatalytic Performance of Magnetic Fe3O4@TiO2 core-Shell Microspheres Supported by Silica Aerogels from Industrial Fly Ash, J. Alloys. Compd., 659: 240-247 (2016).
[55] Wang X., Liu J., Liu S., Feng X., Bao L., Shi F., Influences of Heat-Treatment on the Microstructure And Properties of Silica–Titania Composite Aerogels, J. Porous. Mater., 21: 293–301 (2014).
[57] Tang R., Chen T., Chen Y., Zhang Y., Wang G., Core‐shell TiO2@SiO2 Catalyst for Transesterification of Dimethyl Carbonate and Phenol to Diphenyl Carbonate, Chin. J. Catal., 35: 457–461 (2014). 
[58] Bethi B., Sonawane Sh.H., Bhanvase B.A., Gumfekar S.P., Nanomaterials-Based Advanced Oxidation Processes for Wastewater Treatment, Chem. Eng. Process.,109: 178-189 (2016).
[61] Sahu M., Biswas P., Single-Step Processing of Copper-Doped Titania Nanomaterials in a Flame Aerosol Reactor, Nanoscale Res. Lett., 6: 441 (2011).
[62] Zhang Z., Wang Ch.Ch., Zakaria R., Ying J., Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, J. Phys. Chem. B.,102: 10871-10878 (1998).
[63] Ouidri S., Khalaf H., Synthesis of Benzaldehyde from Toluene by a Photocatalytic Oxidation Using TiO2-Pillared Clays, J. Photoch. Photobio. A., 207: 268–273 (2009).
[64] Shinde S.S., Bhosale C.H., Rajpure K.Y., Photocatalytic Degradation of Toluene Using Sprayed N-Doped ZnO Thin Films in Aqueous Suspension, J. Photoch. Photobio. B., 113: 70–77 (2012).
[65] Bianchi C.L., Gatto S., Pirola C., Naldoni A., Di Michele A., Cerrato G., Crocellà V., Capucci V., Photocatalytic Degradation of Acetone, Acetaldehyde and Toluene in Gas-Phase: Comparison Between Nano and Micro-Sized TiO2, Appl. Catal. B., 146: 123– 130 (2014).