Synthesis of Schiff Base-functionalized Fullerene Anchored Palladium Complex as a Recyclable Nanocatalyst in the Heck Reaction and Oxidation of Alcohols

Document Type : Research Article

Authors

1 Kermanshah Center, Research Institute of Petroleum Industry (RIPI), Kermanshah, I.R. IRAN

2 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

Abstract

The use of nanocarbon support materials such as fullerene (C60) helps the dispersion of catalysts and creates a new method to develop nanomaterials as a result of its garbled structure Pd-supported on Schiff base modified fullerene (C60LPd2+ and C60LPd0) were fabricated. The obtained catalysts were characterized by FT-IR, XRD, TEM, TGA, and ICP. To investigate the catalytic properties, this catalyst was used in aerobic oxidation of alcohols and Heck coupling as model reactions. The results showed that the efficiency of catalysts has about 75% to 92% and 90% to 98% in these two reactions, respectively. The catalyst can be rapidly readily regained and reused at least 5 consecutive cycles without notable leaching and loss of its catalytic actuality.

Keywords

Main Subjects


[1] Goldshleger N.F., Fullerenes and Fullerene-Based Materials in Catalysis, Fullerene Science and Technology, 9(3): 255-280 (2001).
[2] Sulman E., Matveeva V., Semagina N., Yanov I., Bashilov V., Sokolov V., Catalytic Hydrogenation of Acetylenic Alcohols Using Palladium Complex of Fullerene C60, J. Mol. Catal. A: Chem, 146(7): 257-263 (1999).
[3] a) Coqa B., Planeixb J.M., Brotons V.A., Fullerene Based Materials as New Support Media in Heterogeneous Catalysis by Metals, Appl. Catal. A., 173: 175-183 (1998)
   b) Keypour H., Noroozi M., Rashidi A.M., Shariati Rad. M., Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst, J. Chem. Chem. Eng. (IJCCE), 34(1): 21-32 (2015).
[5] Pol S.V., Pol V.G., Frydman A., Churilov G.N, Gedanken A., Fabrication and Magnetic Properties of Ni Nanospheres Encapsulated in a Fullerene-Like Carbon, J. Phys. Chem. B, 109(19):9495-9498 (2005).
[8] Nakhaei A., Davoodnia A., Yadegarian S., Nano-Fe3O4@ZrO2-SO3H as Highly Efficient Recyclable Catalyst for the Green Synthesis of Fluoroquinolones in Ordinary or Magnetized Water, Iranian Journal of Catalysis, 8(1): 47-52 (2018).
[9] kazemi E., Davoodnia A., Nakhaei A. Basafa S., Tavakoli. H N., Investigating Effect of Cerium (IV) Sulfate Tetrahydrate as Reusable and Heterogeneous Catalyst for the one‐Pot Multicomponent Synthesis of Polyhydroquinolines, Advanced Journal of Chemistry-Section A, 1(2): 96-104(2018).
[10] Nakhaei A., Shojaee S., Yaghoobi E., Shirin Ramezani S., Fast and Green Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and –Thiones Using Nanometasilica Disulfuric Acid as Recyclable Catalystin Water, Heterocyclic Letters, 7(2): 323-331(2017).
[12] a) Kim H., Abdala A.A., Macosko C.W., Graphene/Polymer Nanocomposites, Macromolecules, 43(16): 6515-6530 (2010),
[13] Golubeva N.D., Dyusenalin B.K., B Selenovab.S., S Pomogailo.I., Zharmagambetova A.K., Zhardimalieva G.I., Pomogailo A.D., Hybrid Polymer-Immobilized Palladium Nanoparticles: Preparation and Catalytic Properties, Kinet Catal, 52: 242-250(2011).
[14] Gao S., Shang N., Feng C., Wang C., Wang Z., Graphene Oxide–Palladium Modified Ag–Agbr: A Visible-Light-Responsive Photocatalyst for the Suzuki Coupling Reaction, RSC Adv, 4(74): 39242-39247 (2014).
[16] Owusu M.O., Handa S.,  Slaughter L.M., Chugaev‐Type Bis(Acyclic Diaminocarbenes) as a New Ligand Class for the Palladium‐Catalyzed Mizoroki–Heck Reaction, Appl. Organomet. Chem, 26(12):712-717(2012).
[17] Degtyareva E.S., J Burykina. V., Fakhrutdinov A.N., Gordeev E.G., Khrustalev V.N., Ananikov V.P., Pd-NHC Catalytic System for the Efficient Atom-Economic Synthesis of Vinyl Sulfides from Tertiary, Secondary or Primary Thiols, ACS Catal., 5(12):7208-7213(2015).
[18] Benhamou L., Besnard C., Kündig E.P., Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions, Organometallics, 33(1): 260-266 (2014).
[19] Wu X. F., Neumann H., Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations, Beller, M. Chem. Rev, 113(1):1-35(2013).
[21] Jawale D. V., Gravel E., Boudet C., Shah N., Geertsen V., Li H., Namboothiri I.N.N.  Doris E., Room Temperature Suzuki Coupling of Aryl Iodides, Bromides, and Chlorides Using a Heterogeneous Carbon Nanotube-Palladium Nanohybrid Catalyst, Catal Sci Technol, 5(4):2388-2392(2015).
[22] Chi Y., Bhonsle J.B., Canteenwala T., Huang J.P., Shiea J., Chen B.J., Chiang L.Y., Novel Water-Soluble Hexa(sulfobutyl)fullerenes as Potent Free Radical Scavengers, Chem. Lett, 27(5): 465-466 (1998).
[23] Sullivan B.P., Krist K., Guard H.E., “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide”, Elsevier Science Publishers, Amsterdam, (1993).
[24] Cram D.J., Hammond G.S., “Organic Chemistry”, McGraw-Hill, Inc., U.S.A. (1964).
[26] Pavia D.L., Lampman G. M., Kriz G.S., Vyvyan J.R., ”Introduction to Spectroscopy”, 4th ed.., Brooks/Cole: Belmont, CA, (2009).
[29] Ravi P., Dai S., Hong K.M., Tam K.C., Gan L.H., Self-assembly of C60 Containing Poly (methyl methacrylate) in Ethyl Acetate/Decalin Mixtures Solvent, Polymer, 46(13): 4714-4721(2005).
[31] Steven P. W., Thomas P., Jamey L., Michele A.W., Christopher S.F., Extraction, Isolation, and Characterization of Fullerene C60: A Safe and Reliable Separation Experiment, J. Chem. Educ, 74(3): 311(1997).
[32] Zhu W., Miser D.E., Chan W.G., Hajaligol M.R., Characterization of Combustion Fullerene Soot, C60, and Mixed Fullerene, Carbon, 42: 1463-1471(2004).
[33] Saxby J.D., Chatfield S.P., Thermogravimetric Analysis of Buckminsterfullerene and Related Materials in Air, J. Phys. Chem, 96(1):17-18(1992).
[34] Iranpoor N., Firouzabadi H., Tarassoli A., Fereidoonnezhad M., 1, 3, 2, 4-Diazadiphosphetidines as New P–N Ligands for Palladium-Catalyzed Heck Reaction in Water, Tetrahedron, 66(13): 2415-2421(2010).
[36] (a) Beletskaya I.P., Cheprakov A.V., The Heck Reaction as a Sharpening Stone of Palladium Catalysis, Chem. Rev, 100(8): 3009-3066(2000).
       (b) Dounay A.B., Overman L.E., The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis, Chem. Rev. 103(8): 2945-2964 (2003).
      (c) Lin B.L., Liu L., Fu Y., Luo S.W., Chen Q., Guo Q.X., Comparing Nickel- and Palladium-Catalyzed Heck Reactions, Organometallics, 23(9): 2114-2123(2004).
       (d) Cui X., Li Z., Tao C.Z., Xu Y., Li J., Liu L., Guo Q.X., N,N-Dimethyl-β-Alanine as an Inexpensive and Efficient Ligand for Palladium-Catalyzed Heck Reaction, Org. Lett, 8(12): 2467-2470(2006).
[37] (a) Nielsen R.J., Goddard W.A., Mechanism of the Aerobic Oxidation of Alcohols by Palladium Complexes of N-Heterocyclic Carbenes J. AM. CHEM. SOC, 128(30): 9651-9660(2006).
      (b) Hallman K., Moberg C., Palladium(II)-Catalyzed Oxidation of Alcohols with Air as Reoxidant, Adv. Synth. Catal, 343(3): 260-263(2001).
     (c) Li Qun J., Ai Wen L., Mechanistic Aspects of Oxidation of Palladium with O2, Sci. China Chem., 55(10): 2027–2035(2012).