Study of the Kinetics and Thermodynamics of Adsorption of Hexavalent Chromium on the Luffa Cylindrica Cords

Document Type: Research Article

Authors

1 Laboratory Chemical Plant - Water - Energy, Department chemistry, Chlef University, P.O. Box 151, Hay Essalem, 02000, Chlef, ALGERIA

2 Laboratory Environment-Water, Chlef University, P.O. Box 151, Hay Essalem, 02000 Chlef, ALGERIA

3 LBMPT, Medea University, ALGERIA

10.30492/ijcce.2020.39755

Abstract

In the present work, the objective is to determine the potential use of natural materials, Luffa cylindrica cords for the removal of Chrome (VI) through the adsorption batch process under different experimental conditions. The determination of the concentrations of Chrome (VI) has been performed using a UV - visible spectrophotometer. Adsorption studies were carried out under various parameters such as contact time, pH, initial concentration, and temperature. The results obtained show that Luffa cylindrica cords/Chrome (VI) have an adsorption capacity of 29.98 mg/g. The adsorption process was rapid and reached equilibrium in 60 min of contact at 343K and pH 7.7. The different adsorption models Langmuir, Freundlich, Temkin, and Elovich were used for the mathematical description of the adsorption equilibrium, and it was found that the very well - equipped experimental data for the Langmuir model (R2=0.9700), the pseudo-first-order and pseudo-second-order kinetic models were applied to the experimental data. The experimental data fitted very well the pseudo-second-order kinetic model (R2= 0.982) and also followed the model of intraparticle diffusion (Kdif vary from 0.687 to 4.040 mg/(g min1/2) for concentrations between 25 and 150 mg/L), whereas diffusion is not the only rate - control step. The thermodynamic parameters study shows that the negative value of ΔH° (-11.49 kJ/mol) indicated that the adsorption of Chrome (VI) on Luffa Cylindrica cords was exothermic, the reaction was accompanied by a decrease in entropy (- 0.033 kJ/K. mol). The Gibbs free energy increased from -0.171 to -1.722 kJ/mol, respectively for Chrome (VI) when the temperature was increased from 296 to 343 K. The studied system shows that the adsorption process is spontaneous. The physical properties of the biosorbent were determined by FT-IR analysis and X-RD.

Keywords

Main Subjects


[1] Arulkumar M., Thirumalai K., Sathishkumar P., Thayumanavan P., Rapid Removal of Chromium from Aqueous Solution Using Novel Prawn Shell Activated Carbon, Chem. Eng. J. 185: 178- 86 (2012).
[2] Wan Ngah W.S., Hanafiah, M.A., Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant wastes as Adsorbents. A Review. Bioresour. Technol.. 99(10): 3935-48 (2008).
[3] Gupta V.K, Ali I., Removal of Lead and Chromium from Wastewater Using Bagasse Fly Ash - A Sugar Industry Waste, J. Coll. Interface. Sci. 271(2): 321-28 (2004).
[4] Krzysztof R. and Krzysztof L., Stimulation of Heavy Metal Adsorption Process by Using a Strong Magnetic Field. Water Air Soil Pollution, 229 (20) (2018).
[5] Dipendra W., Heather J S., Adsorption of Arsenic (V) to Titanium Dioxide Nanoparticles: Effect of Particle Size, Solid Concentration, and Other Metals, Env. Eng. Sci., 33(5): 299-305 (2016).
[6] Yuh-Shan Ho, Augustine E. Ofomaja, Kinetics and Thermodynamics of Lead Ion Sorption on Palm Kernel Fibre from Aqueous Solution, Process Biochemistry, 40: 3455-3461 (2005).
[7] Ashtoukhy ESZ., Amin N.K., Abedelwahab O., Removal of Lead (II) and Copper (II) from Aqueous Solution Using Pomegranate Peel as a New Adsorbent, Desalination, 223: 162-173 (2008).
[8] Dhanakumar S., Solaraj G., Mohanraj R., Pattabhi S., Removal of Cr (VI) from Aqueous Solution by Adsorption Using Cooked Tea Dust, Indian J. Sci. Techn., 1(2): 1-6 (2007).
[9] Demirbas E., Kobya M., Senturk E., Ozkan T., Adsorption Kinetics for the Removal of Chromium (VI) from Aqueous Solutions on the Activated Carbons Prepared from Agricultural Wastes, Water SA. 30(4): 533-39 (2004).
[10] Neagu V., Mikhalovsky S., Removal of Hexavalent chromium by New Quaternized Crosslinked Poly
(4-vinylpyridines), J. Hazard. Mater. 183(1-3): 533-40 (2010).
[11] Beulah S.K.M., Removal of Chromium (VI) from Wastewater Using Chemically Activated Syzygium Jambolanum nut Carbon by Batch Studies, Procedia Environ. Sci., 4: 266-28 (2011).
[12] WHO, “Guidelines for Drinking-Water Quality, Volume 1: Recommendations”, 3rd ed, Geneva: World Health Organization, (2004).
[13] Cieslak-Golonka M., Toxic and Mutagenic Effects of Chromium (VI), Polyhedron. 15(21): 3667-918 (1996).
[14] Malakootian M., Askarpour A., Amirmahani N., Nasiri Z., Nasir A., Removal of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide, J. Community Health Research. 4(3): 177-193 (2015).
[15] Institute of Standards & Industrial Research of Iran, “Quality Standards of Drinking Water. 1053” (1997). http://www.isiri.org/std/1053.htm.
[16] Pagnanelli F., Mainelli S., Veglio F., Toro L., Heavy Metal Removal by Olive Pomace: Biosorbent Characterisation and Equilibrium Modelling, Chem Eng Sci., 58(20): 4709-4717 (2003).
[17] Sanchooli M., Marziyeh, R.S., Taghavi, M., Cadmium Removal from Aqueous Solutions Using Saxaul Tree Ash, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 45-52 (2016).
[18]Laidani Y., Hanini S., Mortha G., Henini G., Study of a Fibrous Annual Plant, Luffa Cylindrica for Paper Application Part I: Characterization of the Vegetal, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 119-129 (2012).
[19] Tanobe V.O.A., Sydenstricker T.H.D., Munaro M., Amico S.C., A Comprehensive Characterization of Chemically Treated Brazilian Sponge - Gourds (Luffa cylindrica), Polymer Test., 24(4): 474-482 (2005).
[20] Demir H., Top A., Balkose D., Ulku S., Dye Adsorption Behavior of Luffa Cylindrica Fibers,
J. Hazard. Mater., 153: 389-394 (2008).
[21]Hidalgo-VA´ zquez AR., Alfaro-Cuevas-Villanueva R., Ma´rquez-benavides L., Cortés-Martinez R., Cadmium and Lead Removal from Aqueous Solutions Using Pine Sawdust as Biosorbent,
J. Appl. Sci. Environ. Sanit., 6(4): 447–462 (2011).
[22]Gupta V.K., Agarwal S., Singh P., Pathania D., Acrylic Acid Grafted Cellulosic Luffa Cylindrical Fiber for the Removal of Dye and Metal Ions, Carbohy. Polym., 98: 121 (2013).
[23] Kalia, S., Kumar, A. Kaith, B.S., Sunn Hemp Cellulose Graft Copolymers Poly hydroxyl butyrate Composites: Morphological and Mechanical Studies, Advanced Mater. Lett., 2: 17-25 (2011).
[24] Sanghavi B.J., Mobina S.M., Mathur P., Lahiri G. K., Srivastava A.K., Biomimetic Sensor for Certain Catecholamines Employing Copper (II) Complex and Silver Nanoparticle Modified Glassy Carbon Paste Electrode, Biosensors and Bioelectronics., 39: 124 (2013).
[25] Sanghavi B.J., Kalambate P.K., Karna S.P., Srivastava A.K., Voltammetric Determination of Sumatriptan Based on a Graphene/Gold Nanoparticles/Nafion Composite Modified Glassy Carbon Electrode, Talanta, 120:1-9 (2014).
[26] Sharma S., Pathania D., Preparation, Characterization and Cr(VI) Adsorption Behavior Study of Poly(Acrylic Acid) Grafted Ficus Carica Bast Fiber, Advanced Mater. Lett., 4(4): 271-276  (2013).
[27] Wang L., Dong W., Xu Y., Synthesis and Characterization of Hydroxyl Propyl Methyl Cellulose and Ethyl Acrylate Graft Copolymers, Carbohy. Polym., 68: 626- 636 (2006).
[28]Kapoor A., Viraraghavan T., Nitrate Removal from Drinking Waterreview, J. Env. Eng.-Asce, 123(4): 371-80 (1997).
[29] Song H., Zhou Y., Li A., Mueller S., Selective Removal of Nitrate by Using a Novel Macroporous Acrylic Anion Exchange Resin, Chin. Chem. Lett., 03(4): 603-606 (2012).
[30] Gupta V.K., Rastogi A., Biosorption of Hexavalent Chromium by Raw and Acid-Treated Green Alga Oedogonium Hatei from Aqueous Solutions, J. Hazard. Mater. 163: 396-402 (2009).
[31] Gupta, V.K., Rastogi, A., Sorption and Desorption Studies of Chromium (VI) from Nonviable Cyanobacterium Nostocmuscorum Biomass, J. Hazard. Mater. 154: 347-354 (2008).
[32] Sarı A., Tuzen M., Biosorption of Total Chromium from Aqueous Solution by Red Algae (Ceramium virgatum): Equilibrium, Kinetic and Thermodynamic Studies, J. Hazard. Mater. 160: 349-355
(2008).
[33] Nouacer S., Hazourli S., Djellabi R., Khelaifia F.Z., Hachani R., Ziati M, Using a New Lignocellulosic Material Based on Palm Stems for Hexavalent Chromium Adsorption in Aqueous Solution, Int. J. Environ. Res., 10(1): 41-50 (2016).
[34] Gupta V.K., Pathania D., Sharma S., Agarwal S.Sin P., Remediation of Noxious Chromium (VI) Utilizing Acrylic Acid Grafted Lignocellulosic Adsorbent, J. Mole. Liquids, 177: 343-352(2013).
[35] Aksu Z., Acikel U., Kabasakal E., Tezer S., Equilibrium Modelling of Individual and Simultaneous Biosorption of Chromium (VI) and Nickel (II) onto Dried Activated Sludge, Water Res. 36: 3063-3073 (2002).
[36] Prakashan R.S., Merrie J.S., Sheela R., Saswathi N., Ramakrishna S.V., Biosorption of Chromium (VI) by Free and Immobilized Rhizopus Arrhizus, Environ. Pollut. 104: 421-427 (1999).
[37]Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids, J. Am. Chem. Soc. 38(11): 2221-2295 (1916).
[38] Dehvari M., Ehrampoush M., Ghaneian H., Taghi M., Adsorption Kinetics and Equilibrium Studies of Reactive Red 198 Dye by Cuttlefish Bone Powder, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 143-151 (2017)
[39] Naseri A., Barati R., Rasoulzadeh F., Bahram M., Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 51-60 (2015).
[40] Freundlich H.M.F., Uber Die Adsorption in Losungen (Over the Adsorption in Solutions, J. Phys. Chem. 57A: 385-470 (1906).
[41]Haq Nawaz B., Rubina K., Muhammad Asif H., Biosorption of Pb (II) and Co (II) on Red Rose Waste Biomass, Iran. J. Chem. Chem. Eng. (IJCCE), 30(4): 81-87 (2011).
[42]Beigi S.M., Babapoor A., Maghsoodi V., Mousavi S.M., Rajabi N., Batch Equilibrium and Kinetics Studies of Cd (II) Ion Removal from Aqueous Solution Using Porous Chitosan Hydrogel Beads, Iran. J. Chem. Chem. Eng. (IJCCE), 28(3): 81-89 (2009).
[43] Xu H., Liu D.-d., He L., Liu N., Ning G., Adsorption of Copper (II) from an Wastewater Effluent of Electroplating Industry by Poly (ethylenediamine)- Functionalized Silica, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2): 73-81 (2015).
[44] Timken M. J., and Pyzhev V., Recent Modifications to Langmuir Isotherms, Acta Physicochim URSS, 12: 217-222 (1940).
[45] Sparks D. L., “Kinetics of Soil Chemical Processes”, Academic Press New York, 4-38 (1989).
[46] Zhang J., Stanforth R., Slow Adsorption Reaction between Arsenic Species and Goethite (α-FeOOH):  Diffusion or Heterogeneous Surface Reaction Control, Langmuir, 21(7): 2895 - 2901 (2005).
[47] Laidani Y., Henini G., Hanini S., Labbaci A., Souahi F., Removal of Lead from Aqueous Solutions by Biosorption on Pomegranate Skin: Kinetics, Equilibrium and Thermodynamics, J. Chem. Molec. Nucl. Mat. Metal. Eng., 10(7): (2016).
[48] Amarasinghe B.M.W.P.K and Williams R.A., Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater, Chem. Eng. J., 132(1-3): 299-309 (2007).
[49] Vaghetti JCP, Lima EC, Royer B, Brasil JL, da Cunha BM, Simon NM, et al.,  Application of Brazilianpine Fruit Coat as Biosorbent to Removal of Cr(VI) from Aqueous Solution-Kinetics and Equilibrium Study, Biochem. Eng. J., 42: 67–76 (2008).
[50] Murphy V., Hughes H., McLoughlin P., Comparative Study of Chromium Biosorption by Red, Green and Brown Seaweed Biomass, Chemosphere, 70: 1128–1134 (2008).
[51] Fiol N., Villaescusa I., Martínez M., Miralles N., Poch J., Serrarlos J., Biosorption of Cr(VI) Using Low Cost Sorbents, Environ. Chem Lett., 1: 135–139 (2003).
[52]Dhanakumar S., Solaraj G., MohanrajR., Pattabhi S., Removal of Cr (VI) from Aqueous Solution by Adsorption Using Cooked Tea Dust, Indian J. Sci. Technol., Vol.1(2) (2007).
[53] Alma Rosa N.-M., María del Carmen C.-U., Eliseo C.-U., Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies, J. PLOS ONE, 1-23 (2015).
[54] Elangovan R., Philip L., Chandraraj K., Biosorption of Hexavalent and Trivalent Chromium by Palm Flower (Borassusaethiopum), Chem. Eng. J., 141: 99–111(2008).
[55] Ncibi M. C., Borhane M., Mongi S., Biosorption of Chromium (VI) by a Mediterranean Biomass: Posidonia Oceanica (L.) Delile, J. Wat. Sci., 21(4) : 441-449 (2008).
[56] Argun M.E., Dursun S., Ozdemir C., Karatas, M., Heavy Metal Adsorption by Modified Oak Sawdust: Thermodynamics and Kinetics, J. Hazard. Mater., 141, 77–85 (2007).
[57] Melvin Samuel S., Abigail M. E.A., Biosorption of Cr(VI) by Ceratocystis Paradoxa MSR2 Using Isotherm Modelling, Kinetic Study and Optimization of Batch Parameters Using Response Surface Methodology, J. PLOS ONE, 1-23 (2015).
[58] Lagergren S., Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska, Vetenskapsakademiens. Handlingar, 24 (4): 1-39 (1898).
[59] Crini G., Kinetic and Equilibrium Studies on the Removal of Cationic Dyes from Aqueous Solution by Adsorption onto a Cyclodextrin Polymer, Dyes Pigm., 77: 415- 426 (2008).
[60] Weber J.R., Morris J.C., Kinetics of Adsorption on Carbon from Solution, J. Sanit. Eng. Div. ASCE 89(2): 31-60 (1963).
[61] Seki Y., Yurdakoc K., Adsorption of Promethazine Hydrochloride with KSF Montmorillonite, Adsorption, 12(1): 90-100 (2006).
[62] Senthil Kumar P., Gayathri R., Adsorption of Pb2+ Ions from Aqueous Solutions onto Bael Tree Leaf Powder: Isotherms, Kinetics and Thermodynamics Study, J. Eng. Sci. Tech., 4(4): 381-399 (2009).
[63] Abdel Ghani N.T., Elchaghaby G.A., Influence of Operating Conditions on the Removal of Cu, Zn, Cd and Pb ion from Wastewater by Adsorption, Int. J. Environ. Sci. Tech., 4(4): 451-456 (2007).