Ion Imprinted Affinity Cryogels for the Selective Adsorption Uranium in Real Samples

Document Type: Research Article


Vocational School of Technical Sciences, Dicle University, Diyarbakır, TURKEY


In this research, selective adsorption of U(VI) in aqueous solutionsin the presence of various lanthanide ions by using U(VI)-imprinted cryogel polymer was conducted. For this purpose, the prepared pHEMA-(MAH)3-U(VI) cryogel polymer by free radical polymerization method. U(VI) was desorbed with 5.0 mol/L HNO3 and thus U(VI)-imprinted were created onto p-HEMA-(MAH)3 cryogel polymer. To determine the optimum conditions, in the process of selective adsorption of U(VI) ion to U(VI)-imprinted p-HEMA-(MAH)3 cryogel polymer, some parameters such as pH, flow rate, initial U(VI) concentration were investigated. Under the optimum conditions, the maximum adsorption capacity was obtained as 74.80 mg/g. Selectivity studies were also carried out in the presence of Nd(III), La(III) and Y(III) ions using U(VI)-imprinted p-HEMA-(MAH)3 cryogel polymer. The obtained adsorption order under competitive conditions was U(VI) ˃ La(III) ˃Y(III) ˃Nd(III).


Main Subjects

[1] Wang J., Chen Z., Shao D., Li Y., Xu Z., Cheng C, Asiri A.M., Marwani H.M., Hu S., Adsorption of U(VI) on Bentonite in Simulation Environmental conditions, Journal of Molecular Liquids, 242: 678–684 (2017).

[2] Iliaa R., Liatsou I., Savva I., Vasile E., Vekas L., Marinica, O., Mpekris F., Pashalidis I., Christoforou T.K., Magnetoresponsive Polymer Networks as Adsorbents for the Removal of U(VI) Ions from Aqueous Media, European Polymer Journal, 97:138-146 (2017).

[4] Wang Y.L., Huang C.,  Li F.J.,  Dong Y.M.,  Sun X.Q., Process for the Separation of Thorium and Rare Earth Elements from Radioactive Waste Residues Using Cyanex® 572 as a New Extractant, Hydrometallurgy, 169: 158–164 (2017).

[5] Lu Y., Wei H.,  Zhang Z., Li Y., Wu G., Liao W., Selective Extraction and Separation of Thorium from Rare Earths by a Phosphorodiamidate Extractant, Hydrometallurgy, 163: 192–197 (2016).

[6] Wang Y., Wu L., Yang Y., Feng W., Yuan L., Efficient Separation of Thorium from Rare Earths with a Hydrogen-Bonded Oligoaramide Extractant in Highly Acidic Media, Journal of  Radioanalytical Nuclear Chemistry, 305: 543–549 (2015).

[7] Zhu Z., Pranolo Y., Cheng C.Y., Separation of Uranium and Thorium from Rare Earths for Rare Earth Production - A Review, Mineral Engineering, 77: 185–196 (2015).

[8] Gu Z., Probing the Problems of Thorium Utilization as a Nuclear Energy Resource, Chinese Journal of Nuclear Science and Engineering, 27: 97–105 (2007).

[9] Abdollahy M., Shojaosadati S.A., Tavakoli H.Z., Valivand A., Bioleaching of Low Grade Uranium Ore of Saghand Mine, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 10: 71-79 (2011).

[10] Chmielewski A.G., Nuclear Fissile Fuels Worldwide Reserves, Nukleonika, 53: 11–14 (2008).

[11] Horwitz E.P., Dietz M.L., Chiarizia R.,  Diamond H., Essling A.M., Graczyk M., Separation and Preconcentration of Uranium from Acidic Media by Extraction Chromatography, Analytica Chimica Acta, 266: 25-37 (1992).

[12] Dolak I., Karakaplan M.,  Ziyadanogulları B., Ziyadanogulları R., Solvent Extraction, Preconcentration and Determination of Thorium with Monoaza 18-Crown-6 Derivative, Bulletin of the Korean Chemical Society, 32: 1564-1568 (2011).

[13] Yener I., Oral E.V., Dolak I., Ozdemir O., Ziyadanogulları R., A New Method for Preconcentration of Th (IV) and Ce (III) by Thermophilic Anoxybacillus Flavithermus Immobilized on Amberlite XAD-16 Resin as a Novel Biosorbent, Ecological Engineering, 103: 43-49 (2017).

[14] Kaminski M.D., Nunez L., Separation of Uranium from Nitric- and Hydrochloric-acid Solutions with Extractant-Coated Magnetic Microparticles, Separation Science and Technology, 35: 2003-2018 (2000).

[15] Haerizade B.N., Ghavami M., Koohi M., Darzi S.J., Rezaee N., Kasaei M.Z., Green Removal of Toxic Pb(II) from Water by a Novel and Recyclable Ag/γ-Fe2O3@r-GO Nanocomposite, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37: 29-37 (2018).

[17] İnam R., Çaykara T., Özyürek C., Polarographic Determination of Uranyl Ion Adsorption on Poly-(2-Hydroxyethyl Methacrylate/itaconic acid) Hydrogels, Separation Science and Technology, 36: 1451-1461 (2001).

[18] Sana S., Roostaazad R., Yaghmaei S., Biosorption of Uranium (VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 8: 65-74 (2015).

[19] Dolak I., Keçili R., Hür D., Ersöz A., Say R., Ion-Imprinted Polymers for Selective Recognition of Neodymium (III) in Environmental Samples, Industrial & Engineering Chemistry Research, 54: 5328-5335 (2015).

[20] Keçili R., Dolak I., Ziyadanoğulları B., Ersöz A., Say R., Ion Imprinted Cryogel-Based Supermacroporous Trapsfor Selective Separation of Cerium (III)in Real Samples, Journal of Rare Earths, 36: 857-862 (2018).

[21] Dolak I., Selective Separation and Preconcentration of Thorium (IV) in Bastnaesite Ore Using Thorium (IV)-Imprinted Cryogel Polymer, Hacettepe Journal of Biology and Chemistry, 46: 187-197 (2018).

[22] Harkins D.A., Schweitzer G.K., Preparation of Site-Selective Ion-Exchange Resins, Separation Science and Technology, 26: 345-354 (1991).

[23] Panahi H.A., Zadeh M.S., Tavangari S., Moniri E., Ghassemi J., Nickel Adsorption from Environmental Samples by Ion Imprinted Aniline -Formaldehyde Polymer, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 31: 35-44 (2012).

[24] Wulff G., Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates—a Way Towards Artificial Antibodies, Angewandte Chemie International Edition, 34: 1812-1832 (1995).

[25] Pakdehi S.G., Adsorptive Removal of Al, Zn, Fe, Cr and Pb from Hydrogen Peroxide Solution by IR-120 Cation Exchange Resin, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 11: 75-84 (2016).

[27] Chen F., Yang Z., Tang Y., Wang X., Selective Extraction and Determination of Di(2-ethylhexyl) Phthalate in Aqueous Solution by HPLC Coupled with Molecularly Imprinted Solid-phase Extraction, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36: 127-136 (2017).

[28] Didaskalou C., Buyuktiryaki S.,  Kecili R.,  Fonte C.P., Szekely G., Valorisation of Agricultural Waste with an Adsorption/Nanofiltration Hybrid Process: from Materials to Sustainable Process Design, Green Chemistry, 19: 3116-3125 (2017).

[29] Székely G., Fritz E., Bandarra J., Heggie W., Sellergren B., Removal of Potentially Genotoxic Acetamide and Arylsulfonate Impurities from Crude Drugs by Molecular Imprinting, Journal of Chromatography A, 1240: 52-58 (2012).

[30] Dolak I., Keçili R., Onat R., Ziyadanoğulları B., Ersöz A., Say R., Molecularly Imprinted Affinity Cryogels for the Selective Recognition of Myoglobin in Blood Serum, Journal of Molecular Structure, 1174: 171-176 (2018).

[32] Saylan Y., Yilmaz F., Özgür E., Derazshamshir A., Yavuz H., Denizli A., Molecular Imprinting of Macromolecules for Sensor Applications, Sensors, 17: 1-30 (2017).

[33] Sellergren B., Imprinted Chiral Stationary Phases in High-Performance Liquid Chromatography, Journal of Chromatofraphy A, 906: 227-252 (2001).

[34] Wei S., Mizaikoff B., Recent Advances on Noncovalent Molecular Imprints for Affinity Separations, Journal of Separation Science, 30: 1794-1805 (2007).

[35] Vedadghavami A., Minoei F., Hosseini S.S., Practical Techniques for Improving Teh Performance of Polymeric Membranes and Processes for Protein Separation and Purification, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37: 1-23 (2018).

[36] Lasáková M., Jandera P., Molecularly Imprinted Polymers and Their Application in Solid Phase extraction, Journal of Separation Science, 32: 788-812 (2009).

[37] Alvarez-Lorenzo C., Concheiro A., Molecularly Imprinted Polymers for Drug Delivery, Journal of Chromatography B, 804: 231-245 (2004).

[38] Vidyasankar S., Arnold F.H., Molecular Imprinting: Selective Materials for Separations, Sensors and Catalysis, Current Opinial Biotechnology, 6: 218-224 (1995).

[39] Monier M., Abdel-Latif D.A., Fabrication of Au(III) Ion-Imprinted Polymer Based on Thiol-Modified Chitosan, International Journal of Biological Macromolecules, 105: 777-787 (2017).

[40] Moussa M., Pichon V., Mariet C., Vercouter T., Delaunay N., Potential of Ion Imprinted Polymers Synthesized by Trapping Approach for Selective Solid Phase Extraction of Lanthanides, Talanta, 161: 459-468 (2016).

[41] Moorthy M.S., Tapaswi P.K., Park S.S., Mathew A., Cho H.-J., Ha C.-S., On-imprinted Mesoporous Silica Hybrids for Selective Recognition of Target Metal Ions, Microporous and Mesoporous Materials, 180: 162-171 (2013).

[42] Monier M., Abdel-Latif D.A., Abou El-Reash Y.G., Ion-Imprinted Modified Chitosan Resin for Selective Removal of Pd(II) Ions, Journal of Colloidal and Interface Science, 469: 344-354 (2016).

[43] Mitreva M., Dakova I., Karadjova I., Iron(II) Ion Imprinted Polymer for Fe(II)/Fe(III) Speciation in Wine, Microchemica Journal, 132: 238-244 (2017).

[44]  Msaadi R., Ammar S., Chehimi M.M., Yagci Y., Diazonium-Based Ion-Imprinted Polymer/Clay Nanocomposite for the Selective Extraction of Lead(II) Ions in Aqueous Media, European Polymer Journal, 89: 367-380 (2017).

[45] Roushani M., Abbasi S., Khani H., Sahraei R., Synthesis and Application of Ion-Imprinted Polymer Nanoparticles for the Extraction and Preconcentration of Zinc Ions, Food Chemistry, 173: 266-273 (2015).

[46] Fayazi M., Ghanei M.M., Taher M.A., Ghanei-Motlagh R., Salavati M.R., Synthesis and Application of a Novel Nanostructured Ion-Imprinted Polymer for the Preconcentration and Determination of Thallium(I) Ions in Water Samples, Journal of Hazardous Materials, 309: 27-36 (2016).

[47] Candan N., Tüzmen N., Andaç M., Andaç C.A., Say R., Denizli A., Cadmium Removal out of Human Plasma Using Ion-Imprinted Beads in a Magnetic Column, Materials Science and Engineering C, 29: 144-152 (2009).

[48] Gao B., Meng J., Xu Y., Zhang Y., Preparation of Fe(III) Ion Surface-Imprinted Material for Removing Fe(III) Impurity from Lanthanide Ion Solutions, Journal of Industrial Engineering and Chemistry, 24: 351-358 (2015).

[49] Bereli N., Saylan Y., Uzun L., Say R., Denizli A., L-Histidine Imprinted Supermacroporous Cryogels for Protein Recognition, Separation and Purification Technology, 82: 28-35 (2011).

[50] Baysal Z., Aksoy E., Dolak I., Ersöz A., Say R., Adsorption Behaviours of Lysozyme onto Poly-Hydroxyethyl Methacrylate Cryogels Containing Methacryloyl Antipyrine-Ce(III), International Journal of Polymeric Materials and Polymeric Biomaterials, 67: 199-204 (2018).

[51] Kupai J., Razali M., Buyuktiryaki S., Kecili R., Szekely G., Long-Term Stability and Reusability of Molecularly Imprinted Polymers, Polymer Chemistry, 8: 666-673 (2017).

[52] Fodi T., Didaskalou C.,  Kupai J.,  Balogh G.T.,  Huszthy P., Szekely G., Nanofiltration‐Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous‐Flow Synthesis, Chem Sus Chem, 10: 3435-3444 (2017).