In Situ Production and Deposition of Nanosized Zinc Oxide on Cotton Fabric

Document Type : Research Article


1 Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. IRAN

3 Biotechnology group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran


IIn this research, the cotton fabric was modified with nanosized zinc oxide (ZnO) by a simple and novel approach. The nanosized zinc oxide was prepared and deposited onto cotton fabrics by in situ method using zinc acetate dihydrate (Zn(OAc)2.H2O) as precursors and sodium hydroxide, with and without starch as a capping agent. The size and morphology of nanosized zinc oxide on cotton fabric in the presence and absence of starch were investigated. The samples were characterized by X-Ray Diffraction (XRD), Fourier Transform InfraRed (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDS), Atomic Absorption Spectroscopy (AAS), and contact angle. The antibacterial activity of modified cotton was evaluated by measurement of the reduction of the gram-negative of Escherichia coli (E. coli) on the treatment of cotton. SEM images of treated fabrics were indicated that nanosized zinc oxide was well dispersed on the surfaces of samples. The results of the contact angle revealed the more hydrophobic character of treatment of cotton as compared with blank, which will have high potential applications in various fields.


Main Subjects

[1] Qian L., Hinestroza J.P., Application of Nanotechnology for High-Performance Textiles, Journal of Textile and Apparel, JTATM., 4: 1-7 (2004).
[2] Karst D., Yang Y., Potential Advantages and Risks of Nanotechnology for Textiles, AATCC Review., 6: 44-48 (2006).
[3] Zhang F., Wu X., Chen Y., Lin H., Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish, Fiber Polym., 10(4): 496-501 (2009).
[4] Fouda M.M., Abdel-Halim E.S., Al-Deyab S.S., Antibacterial Modification of Cotton Using Nanotechnology, Carbohydr Polym., 92: 943-954 (2013).
[5] Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J., Metal Oxide Nanoparticles as Bactericidal Agents, Langmuir., 18: 6679-6686 (2002).
[7] Nejati K., Rezvani Z., Pakizevand R., Synthesis of ZnO Nanoparticles and Investigation of the Ionic Template Effect on Their Size and Shape, Int. Nano Lett., 1(2): 75-81 (2011).
[8] Divya B., Karthikeyan C., Rajasimman M., Chemical Synthesis of Zinc Oxide Nanoparticles and Its Application of Dye Decolourization, Int. J. Nanosci. Nanotechnol., 14(4): 267-275 (2018).
[9] Hajiashrafi S., Motakef-Kazemi N., Green Synthesis of Zinc Oxide Nanoparticles Using Parsley Extract, Nanomed. Res. J., 3(1): 44-50 (2018).       
[10] Hajiashrafi, S., Motakef-Kazemi, N., Preparation and Evaluation of ZnO Nanoparticles by Thermal Decomposition of MOF-5, Heliyon., 5: E02152 (2019).
[11] Ghaleb A.D., Khilkala W.M., Abd Alwahid S.N., Preparation and Characterization of ZnO Nanoparticles by Laser Ablation in NaOH Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 11-16 (2018).
[12] Jiang T., Liu L., Yao J., In Situ Deposition of Silver Nanoparticles on the Cotton Fabrics, Fiber Polym., 12(5): 620-625 (2011).
[14] El-Shishtawy R.M., Asiri A.M., In Situ Production of Silver Nanoparticle on Cotton Fabric and Its Antimicrobial Evaluation, Cellulose., 18:75-82 (2011).
[15] Chattopadhyay D.P., Patel B.H., Effect of Nanosized Colloidal Copper on Cotton Fabric, J. Eng. Fiber. Fabr., 4(3): 1-6 (2010).
[16] Perslshtein I., Applerot G., Perkas N., Wehrschrschet, E., Hasmann A., Guebitz, Gedanken G., Cuo-Cotton Nanocomposite: Formation, Morphology, and Antibacterial Activity, A Surf. Coat. Technol., 204: 54-57 (2009). 
[17] Anita S., Ramachandran T., Rajendran R., Koushik C.V., Mahalakshi M.A., A Study of the Antimicrobial Properties of Encapsulated Copper-Oxide Nanoparticles on Cotton Fabric, Text. Res. J., 81: 1091-1099 (2011).
[18] Yue X., Lin H., Yan T., Zhang D., Lin H., Chen Y., Synthesis of Silver Nanoparticles with Sericin and Functional Finishing to Cotton Fabrics, Fiber Polym., 15(4): 716-722 (2014).
[19] Lee H.J., Yeo S.Y., Jeong S.H., Antibacterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics, J Mater Sci.., 38: 2199-2204 (2003).
[20] Fu G., Vary P.S., Lin C.T., Anatase TiO2 Nanocomposites for Antimicrobial Coatings, J. Phys. Chem. B., 109: 8889-8898 (2005).
[21]. Maness P.C., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A., Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of its Killing Mechanism, Appl. Environ. Microbiol., 65: 4094-4098 (1999).
[22] Li Q., Chen S.L., Jiang W.C., Durability of Nano ZnO Antibacterial Cotton Fabric to Sweat, J. Appl. Polym. Sci., 103: 412-416 (2007).
[23] Zhang D., Zhang G., Chen L., Liao Y., Chen Y., Lin H., Morikawa H., Synthesis of ZnO Nanoparticles by PNP and Its Application on the Functional Finishing of Cotton Fabrics, Fiber Polym., 15(9): 1842-1849 (2014).
[24] Yadav A., Prasad V., Kathe A.A., Raj S., Yadav D., Sundaramoorthy C., Vigneshwaran N., Functional Finishing in Cotton Fabrics Using Zinc Oxide Nanoparticles, Bull. Mater. Sci., 29(6): 641-645 (2006).
[25] Vigneshwaran N., Kumar S., Kathe A.A., Varadarajan P..V., Prasad V., Functional Finishing of Cotton Fabrics Using Zinc Oxide–Soluble Starch Nanocomposites, Nanotechnology., 17: 5087-5095 (2006).
[26] Asokan A., Ramachandran T., Ramaswamy R., Koushik C.V., Muthusamy M., Preparation and Characterization of Zinc Oxide Nanoparticles and a Study of the Anti-Microbial Property of Cotton Fabric Treated with the Particles, JTAYM., 6(4): 1-7 (2010).
[27] Chattopadhyay D.P., Vyas D.D., Effect of Silicone Nano-Emulsion Softener on Physical Properties of Cotton Fabric, Indian J. Fiber Text., 35: 72-74 (2010).
[28] Meilert K.T., Laub D., Kiwi J., Photocatalytic Self-Cleaning of Modified Cotton Textiles by TiO2 Clusters Attached by Chemical Spacers, J. Mol. Cata.l A-Chem., 237: 101-108 (2005).
[29] Yuranova T., Mosteo, R., Bandara J., Laub D., Kiwi J., Self-Cleaning Cotton Textiles Surfaces Modified by Photoactive SiO2/TiO2 Coating, J. Mol. Catal. A-Chem., 244: 160-167 (2006).
[31] Becheri A., Durr M., Nostro P.L., Baglioni P., Synthesis and Characterization of Zinc Oxide Nanoparticles: Application to Textiles as UV-Absorbers, J Nanopart. Res., 10: 679-689 (2008).
[32] Li R., Che J., Zhang H., He J., Bahi A., Ko F., Study on Synthesis of ZnO Nanorods and Its UV-Blocking Properties on Cotton Fabrics Coated with the ZnO Quantum Dot, J. Nanopart. Res., 16: 2581-12014 (2014).
[33] Sricharussin W., Threepopnatkul P., Neamjan N., Effect of Various Shapes of Zinc Oxide Nanoparticles on Cotton Fabric for UV-Blocking and Anti-Bacterial Properties, Fiber Polym., 12(8): 1037-1041 (2011).
[34] Souza D.A.R., Gusatti M., Ternus R.Z., Fiori M.A., Riella H.G., In Situ Growth of ZnO Nanostructures on Cotton Fabric by Solochemical Process for Antibacterial Purposes, J. Nanomater., 2018: 1-9 (2018).
[35] Ugur S.S., Sariisçi M., Aktak A.H., Nano-TiO2 Based Multilayer Film Deposition on Cotton Fabrics for UV-Protection, Fiber Polym., 12(2):190-196 (2011).
[36] Peng X., Chen Y., Li F., Zhou W., Hu Y., Preparation and Optical Properties of ZnO@PPEGMA Nanoparticles, Appl. Surf. Sci., 255: 7158-7163 (2009).
[37] Bressy C., Ngo V.G., Ziarelli F., Margaillan A., New Insights Into the Adsorption of 3-(Trimethoxysilyl) Propylmethacrylate on Hydroxylated ZnO Nanopowders, Langmuir, 28: 3290-3297 (2012).
[39] Palasantzas G., De Hosson J.T.M., Wetting on Rough Surface, Acta Mater., 49: 3533–3538 (2001).
[41] d’Água1 R.B., Branquinho R., Duarte M.P., Maurício E., Fernando A.L., Martins R., Fortunato E., Efficient Coverage of ZnO Nanoparticles on Cotton Fibres for Antibacterial Finishing Using a Rapid and Low Cost in Situ Synthesis, New J Chem., 2: 1-22 (2018).
[42] Rajendran R., Balakumar C., Mohammed Ahammed H.A., Jayakumar S., Vaideki K., Rajesh E.M., Use of Zinc Oxide Nano Particles For Production of Antimicrobial Textiles, Int. J. Eng. Sci. Technol., 2(1): 202-208 (2010).