Eco-Friendly scolymus hispanicus for the Removal of Basic Blue 41

Document Type : Research Article

Authors

Laboratory of Engineering of Reaction, Faculty of Mechanical Engineering and Process Engineering (USTHB) BP 32, Beb-Ezzaouar, Algeria, ALGERIA

Abstract

This study presents the feasibility of used untreated Scolymus hispanicus as a low-cost adsorbent for the adsorptive removal of Basic Blue 41 (BB41), a common pollutant in textile wastewater. The Scolymus hispanicus adsorbent was characterized by Fourier Transform InfraRed (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis, and pH zero of point charge (pHzpc) method. The ability of the Scolymus hispanicus in removing the dye color was dependent on contact time, adsorbent dose, initial dye concentration, and solution pH. The optimum adsorption was found at around pH 7; contact time 75 min; adsorbent dose 4 g/L. The maximum percentage dye removal value was 81, 92 % with an initial dye concentration at 5 mg/L.  The adsorption kinetics was best described by pseudo-second-order model for different initial concentrations and the adsorption isotherm follows the Freundlich model.  Thermodynamic parameters such as enthalpy change (∆Hº), free energy change (∆Gº), and entropy change (∆Sº) were studied, and the adsorption process of Basic Blue 41 was found to be endothermic, spontaneous, and physical in nature. The study revealed that the Scolymus hispanicus is a potential adsorbent for effective removal of BB41 from an aqueous solution.

Keywords

Main Subjects


[1] Yeddou Mezenner N., Kinetics and Mechanism of Dye Biosorption onto an Untreated Antibiotic Waste, Desalination, 262: 251–259 (2010). 
[2] Jonstrup M., Kumar N., Murto M., Mattiasson B., Sequential Anaerobic–aerobic Treatment of Azo Dyes: Decolourisation and Amine Degradability, Desalination, 280: 339-346 (2011).
[4] Maximo C., Amorim M.T.P., Costa-Ferreira M. Biotransformation of Industrial Reactive Azo Dyes by Geotricum sp. CCMI 1019. Enzyme Microb Technol. (EMT), 32(1): 45-51 (2003).
[5] O’Mahony T., Guibal E., Tobin J.M., Reactive Dye Biosorption by Rhizopus arrhizus Biomass, Enzyme Microb Technol. (EMT), 31(4): 56-63 (2002).
[6] Naghizadeh A., Kamranifar M., Yari A. Z., Javad M., Equilibrium and Kinetics Study of Reactive Dyes Removal from Aqueous Solutions by Bentonite Nanoparticles, Desal. and Water Treatment, 97: 329-377 (2017).
[7] Dehghani M.H., Naghizadeh A., Alimorad R., Derakhshani E., Adsorption of Reactive Blue 29 Dye from Aqueous Solution by Multiwall Carbon Nanotubes, Desal. and Water Treatment51(40-42): 7655-7662 (2013).
[9] Naghizadeh A., Nabizadeh R., Removal of Reactive Blue 29 Dye by Adsorption on Modified Chitosan in the Presence of Hydrogen Peroxide, Environ. Prot. Eng. (EPE), 42(1): 149-168 (2016).
[10] Kamranifar M., Naghizadeh A., Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 127-137 (2017).
[12] Keskinkan O., Ersu C B., Removal of Basic Dyes from Aqueous Solution Through Adsorption by Eucalyptus Camaldulensis Barks, Ads. Sci. Technol., 27 (9): 821-834 (2009).
[13] Regti A., Laamari R., Stiriba S., El Haddad M.,  Removal of Basic Blue 41 Dyes Using by Eucalyptus Camaldulensis Barks prepared by Phosphoric Acid Action, Inter. J. of Indus.Chem., 8(2): 187-195 (2017).
[15] Ashrafi S.D., Kamani H., A.S., Yousefi N., Mahvi A. H., Optimisation and Modeling of Process Variables for adsorption of Basic Blue 41 on NAOH- Modified Rice Husk Using Response Surface Methodology, Desal. and Water Treatment, 57 (30) ( 2016).
[16] Jawad A.H., Waheeb A.Z., Ramlah A.R., Nawawi W.I., Emad Yousif E., Equilibrium Isotherms, Kinetics, and Thermodynamics Studies of Methylene Blue Adsorption on Pomegranate (Punica granatum) Peels as a Natural Low-Cost Biosorbent, Desalination, 105: 322-331(2018).
[19] Altiner D.D., Sahan Y., A Functional Food Additive: Scolymus Hispanicus L. Flour, Int. J. Food Eng. (IJFE), 2(2): 124- 127 (2017).
[20] Gonzalez-Tejero M.R., Casares-Porcel M., Sanchez-Rojas C.P., Medicinal Plants in the Mediterranean Area: Synthesis of the Results of the Project Rubia, J. Ethnopharmacol.  (JE), 116: 341-57 (2008).
[21] Barka N., Abdennour M., El-Makhfouk M., Removal of Methylene Blue and Eriochrome Black from Aqueous Solution by Biosorption on Scolymus hispanicus L: Kinetics, Equilibriums and Thermodynamics, J. Taiwan Inst.Chem. Eng. (JTICE), 42: 320-326 (2011).
[22] Romani P., Pinelli C., Cantini  A., Cimato., Heimler D., Characterization of Violetto di Toscana, a Typical Italian Variety of Artichoke (Cynara scolymus L.), J. Food Chem. (JFC), 95: 221-225 (2006).
[23] Freundlich H.M.F., Über die Adsorption in LÖsungen, C, Phys. Chem. (PC), 57: 385-470 (1906).
[24] Sayadi M., Farasati M., Mahmood M., Rostami F., Removal of Nitrate, Ammonium and Phosphate From Water Using Conocarpus and Paulownia Plant Biochar, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 205-222 (2020).
[25] Ahmaruzzaman M., Sharma DK., Adsorption of Phenols from Wastewater, J. Colloid Interface Sci. (JCIS), 287: 14–24 (2015).
[26] Treyball E., “Mass Transfert Operation”, 3rd ed. MC Graw Hill, New York (1980).
[27] Tempkin M.J., Pyzhev V., Kinetics of Ammonia Synthesis on Promoted Iron Catalysis, Acta Physiochim. URSS, 12: 327-356 (1940).
[29] Ashish S., Sartape M., Aniruddha V., Mandhare Vikas, V., Jadhav, D.A., Prakash. Raut Mansing, S. Anuse SanjayKolekar, Removal of Malachite Green Dye from Aqueous Solution with Adsorption Technique Using Limonia Acidissima (Wood Apple) Shell as Low-Cost Adsorbent, Arab. J of Chem., 10: 3229-3238 (2017.)
[30] Benhachema F.Z., Attar T., Bouabdallah F., Kinetic Study of Adsorption Methylene Blue Dye from Aqueous Solutions Using Activated Carbon from Starch, Chem. Rev. Lett. (CRL), 2: 33-39 (2019).
[31] Lagergren S., Sven K., Zur Theorie der Sogenannten Adsorption Geloster Stoffe, Vetenskapsakad. Handl,   24:1-39 (1898).
[32] Ho Y.S., McKay G., Sorption of Copper And Nickel Ions From Aqueous Solution Using Peat, J. Ads. (JA), 5: 409- 417 (1999). 
[33]  Derakhshani E., Naghizadeh A., Optimization of Humic Acid Removal by Adsorption Onto Bentonite and Montmorillonite Nanoparticles, J. Mol. Liq. (JML), 259: 76-81 (2018).
[34] Naghizadeh A., Shahabi H., Derakhshani E., Ghasemi F., Mahvic A.H., Synthesis of Nanochitosan for the Removal of Fluoride from Aqueous Solutions: A Study of Isotherms, Kinetics, and Thermodynamics, Fluoride, Res. Report. Fluoride. (RRF), 50(2): 256–268 (2017).
[35] Zafar M.N., Tabassum M., Ghafoor S., Zubair M., Nazar M.F., Ashfaq M., Utilization of Peanut (Arachis Hypogaea) Hull Based Activated Carbon for the Removal of Amaranth Dye From Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 188-191 (2020).
[36] Raeisi N., Tabrizi N.S., Sangpour P., Synthesis of Sodium Alginate-Derived Carbon Aerogel for Adsorptive Removal of Methylene Blue, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 152-168 (2020).
[37] Jawad A.H., Al-Heetim D.T.A., Abd Rashid R., Biochar from Orange (citrus sinensis) Peels by Acid Activation for Methylene Blue Adsorption, Iran. J. Chem. Chem. Eng. (IJCCE), 38(2): 91-105 (2019).
[39] Chao-Yin K., Chung-Hsin W., Jane-Yii Wu., Adsorption of Direct Dyes from Aqueous Solutions by Carbon Nanotubes: Determination of Equilibrium, Kinetics And Thermodynamics Parameters, J. of Colloid and Int. Sci., 327: 308–315(2008).