Ultrasound Enhanced Activity of Catalytic Ozonation for Degradation of 2-sec-butyl-4,6-dinitrophenol in Aqueous Solution and Wastewater

Document Type : Research Article

Authors

1 Department of Chemistry, Khoy Branch, Islamic Azad University, Khoy, I.R. IRAN

2 Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

10.30492/ijcce.2020.37862

Abstract

The degradation and mineralization of 2-Sec-butyl-4,6-dinitrophenol (DNBP) in the aqueous solution was investigated by various advanced oxidation processes including US, US/TiO2, O3, O3/TiO2, O3/US, and US/O3/TiO2. The obtained results revealed that all processes obeyed pseudo-first-order kinetics and the coupled US/O3/TiO2 process was the most efficient method for the removal of the pollutant with a high synergistic effect. Then, the effect of major operational parameters, such as the initial DNBp concentration, ozone, and TiO2 dosage, US power, and pH, on the efficiency of the significant coupled process was studied. Total organic carbon (TOC) was applied for monitoring the mineralization and lower rate constants were obtained and compared to the degradation rate constants. Finally, four degradation intermediates were identified by the GC-MS method and the mineralization of petrochemical wastewater was monitored by Chemical Oxygen Demand (COD) under optimized conditions.

Keywords

Main Subjects


[1] Nakajima J., Tazikani S., Tomioka H., Retardation Effect of Sulfonic Acid on Thermal Radical Polymerization of Styrene, Jpn Petrol Inst, 46: 359–367 (2003).
[2] Gasiewicz T.A., “Nitro Compounds and Related Phenolic Pesticides”, In Hayes WJ., Laws E.R.J. (Eds.). “In Handbook of Pesticide Toxicology”, Academic Press, San Diego., 3: 1191–1269 (1991).
[3] The U.S. Environmental Protection Agency. Lab Cert Bulletin, EPA-815-N-00-001a. (2000).
[4] Ayranci E., Hoda N., Adsorption Kinetics and Isotherms of Pesticides onto Activated Carbon-Cloth, Chemosphere, 60:1600-1607 (2005).
[6] Pera-Titus M., García-Molina V., Baños M.A., Giménez J., Esplugas S., Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review, Appl. Catal. B Environ, 4: 219-256 (2004). 
[7] Gogate P.R., Pandit A.B., A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions, Adv. Environ. Res, 8:501-551 (2004). 
[8] Hao H., Chen Y., Wu M., Wang H., Yin Y., Lu Z., Sonochemistry of Degrading p-chlorophenol in Water by High Frequency Ultrasound, Ultrason. Sonochem, 11:43-46 (2004).
[9] Madhavan J., Kumar P.S., Anandan S., Grieser F., Ashokkumar M., Sonophotocatalytic Degradation of Monocrotophos Using TiO2 and Fe3+, J. Hazard. Mater, 177:944-949 (2010).
[11] Behnajady M.A., Modirshahla N., Shokri M., Vahid B., Effect of Operational Parameters on
Degradation of Malachite Green by Ultrasonic Irradiation
, Ultrason. Sonochem, 15:1009-1014 (2008).
[12] Wang J., Sun W., Zhang Z., Zhang X., Li R., Ma T., Zhang P., Li Y., Sonocatalytic Degradation of Methyl Parathion in the Presence of Micron-Sized and Nano-Sized Rutile Titanium Dioxide Catalysts and Comparison of Their Sonocatalytic Abilities, J. Mol. Catal. A Chem, 272:84–90 (2007).
[13] Xiong Z.L., Cheng X., Sun D.Z., Pretreatment of Heterocyclic Pesticide Wastewater Using 256 Ultrasonic/Ozone Combined Process, J Environ Sci-China, 23;725-730 (2011).
[14] Zatloukalová K., Obalová L., Kočí K., Čapek L. Matěj, Z. Šnajdhaufová, H. Ryczkowski, J.; Słowik, G. Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized  TiO2 Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 29-38 (2017). 
[15] Mousanejad T., Khosravi M., Tabatabaii S., Khataee A.R., Zare K., Photocatalytic Ozonation for Degradation of 2-sec-butyl-4, 6-dinitrophenol (DNBP) Using Titanium Dioxide: Effect of Operational Parameters and Wastewater Treatment, Res. Chem. Intermed, 40:711-722 (2014).
[16] Yang T., Peng J., Zheng Y., He X., Hou Y., Wu L., Fu X., Enhanced Photocatalytic Ozonation Degradation of Organic Pollutants by ZnO Modified TiO2 Nanocomposites, Appl. Catal. B Environ, 221: 223-234 (2018)
[17] He Z., Song S., Ying H., Xu L., Chen J., p-Aminophenol Degradation by Ozonation Combined with Sonolysis: Operating Conditions Influence and Mechanism, Ultrason. Sonochem, 14:568–574 (2007).
[18]  Hu Y.,  Milne N.,  Gray S., Morris G.,  Jin W., Duke M., Zhu B., Combined TiO2 Membrane Filtration and Ozonation for Efficient Water Treatment to Enhance the Reuse of Wastewater, Desal. Wat. Treat, 34: 57-62 (2011).
[20] Vecitis C.D., Lesko T., Colussi A.J., Hoffmann M.R., Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone,J. Phys. Chem., A, 114:4968-4980 (2010).
[22] Xu X., Shi H., Wang D., Study on US/O3 Mechanism in p-Chlorophenol Decomposition,
J. Zhejiang Univ. Sci., B, 6:553 (2005).
[23] Song S., Xia M., He Z., Ying H., Lu B., Chen J., Degradation of p-nitrotoluene in Aqueous Solution by Ozonation Combined with Sonolysis, J. Hazard. Mater 144:532-537 (2007).
[24] Song S., He Z.Q., Chen J.M., US/O3 Combination Degradation of Aniline in Aqueous Solution, Ultrason. Sonochem, 14:84-88 (2007).
[25] He Z., Zhu R., Xu X., Song S., Chen J., Xia M., Ozonation Combined with Sonolysis for Degradation and Detoxification of m-Nitrotoluene in Aqueous Solution, Ind Eng Chem Res, 48:5578-5583 (2009).
 [26] Taras M.J., Greenberg A.E., Hoak R.D., Rand M.C., Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, Section 143: 271–274 (1974).
[27] Marandi R., Olya M.E., Vahid B., Khosravi M., Hatami M., Kinetic Modeling of Photocatalytic Degradation of an Azo Dye Using Nano-TiO2/PolyesterEnviron. Eng. Sci, 29:957–963 (2012).
[28] Zarei M., Salari D., Niaei A., Khataee A.R., Peroxi-Coagulation Degradation of C.I. Basic Yellow 2 Based on Carbon-PTFE and Carbon Nanotube-PTFE Electrodes as Cathode, Electrochim. Acta, 54: 6651–6660 (2009).
[29] Beltran F.J., Rivas F.J., Gimeno O., Comparison between Photocatalytic Ozonation and other Oxidation Processes for the Removal of Phenols from Water, J. Chem.Technol. Biotechnol, 80:973-984 (2005).
[30] Yang L.P., Hu W.Y., Huang H.M., Yan B., Degradation of High Concentration Phenol by Ozonation in Combination with Ultrasonic Irradiation, Desal. Wat. Treat, 21:87-95 (2010).
[31]  Somensi C.A.,  Simionatto E.L., Dalmarco J.B., Gaspareto P., Radetski C.M., A Comparison between Ozonolysis and Sonolysis/Ozonolysis Treatments for the Degradation of the Cytostatic Drugs Methotrexate and Doxorubicin: Kinetic and Efficiency Approaches, J. Environment. Sci. Health Part A, 47:1543-1550 (2012).
[32] Rajeshwar K., Osugi M., Chanmanee W., Chenthamarakshan C., Zanoni M., Kajitvichyanukul P., Krishnan-Ayer R., Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media, J Photochem Photobiol C. 9:171-192 (2008).
[33] Wang J., Guo B., Zhang X., Zhang Z., Han J., Wu J., Sonocatalytic Degradation of Methyl Orange in the Presence of TiO2 Catalysts and Catalytic Activity Comparison of Rutile and anatase, Ultrason. Sonochem. 12:331-337 (2005). 
[34] Ince N.H., Tezcanli G., Reactive Dyestuff Degradation by Combined Sonolysis and Ozonation, Dyes Pigm. 49:145-153 (2001).
[35]  Lagha A.,  Ouederni A., Treatment of Dissolved Sulfides in Water by Combined Process Using Ozone and Activated Carbon, Desal. Wat. Treat. 53: 1118-1125 (2015).
[36]Little J.L., Artifacts in Trimethylsilyl Derivatization Reactions and Ways to Avoid Them, J. Chromatogr. A. 844:1-22 (1999).