Synthesis and Characterization of Pyrano[3,2-C]Chromene Derivatives: Exploring Their Optoelectronic and Charge Transport Properties by First-Principles Approach

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Science, King Khalid University, 61413, P.O. Box 9004 Abha, SAUDI ARABIA

2 Research Center for Advanced Materials Science, King Khalid University, 61413, Abha, SAUDI ARABIA

Abstract

With the aim to enhance the charge transport, optoelectronic and semiconducting properties various multifunctional pyrano[3,2-c]chromene derivatives were synthesized and characterized. To shed light on the various properties of interests, the ground state geometries were optimized by Density Functional Theory (DFT). The effect of different substituents, e.g., thiophen-2-yl, 5-bromothiophen-2-yl, 1H-indol-3-yl, pyridin-3-yl, and benzo[d][1,3]dioxol-5-yl was studied on the structural stability, electronic properties, and absorption wavelengths by DFT and Time-Domain DFT (TDDFT). The experimental excitation energies were successfully reproduced at TD-PBE/6-31G** level in DMSO. The electron injection barrier, ionization potential, electron affinity, and reorganization energies for hole and electron were calculated and compared systematically. The smaller electron reorganization energies of pyrano[3,2-c]chromene derivatives except indole substituted one is illuminating that these materials would be efficient to be used in n-type semiconductor devices.

Keywords

Main Subjects


[1] Yan Q., Zhou Y., Ni B.-B., Ma Y., Wang J., Pei J., Cao Y., Organic Semiconducting Materials from Sulfur-Hetero Benzo[K]Fluoranthene Derivatives: Synthesis, Photophysical Properties, and Thin Film Transistor Fabrication, J. Org. Chem., 73(14): 5328-5339 (2008).
[2] Sheng W., Zheng Y.-Q., Wu Q., Wu Y., Yu C., Jiao L., Hao E., Wang J.-Y., Pei J., Synthesis, Properties, and Semiconducting Characteristics of BF2 Complexes of Β,Β-Bisphenanthrene-Fused Azadipyrromethenes, Org. Lett., 19(11): 2893-2896 (2017).
[3] Irfan A., Chaudhry A.R., Muhammad S., Al-Sehemi A.G., Exploring the Potential of Boron-Doped Nanographene as Efficient Charge Transport and Nonlinear Optical Material: A First-Principles Study, J. Mol. Graphics Modell., 75(Supplement C): 209-219 (2017).
[4] Costa J.C.S., Taveira R.J.S., Lima C.F.R.A.C., Mendes A., Santos L.M.N.B.F., Optical Band Gaps of Organic Semiconductor Materials, Opt. Mater., 58(Supplement C): 51-60 (2016).
[5] Coropceanu V., Cornil J., da Silva Filho D.A., Olivier Y., Silbey R., Brédas J.-L., Charge Transport in Organic Semiconductors, Chem. Rev., 107(4): 926-952 (2007).
[6] Lei T., Wang J.-Y., Pei J., Roles of Flexible Chains in Organic Semiconducting Materials, Chem. Mater., 26(1): 594-603 (2014).
[7] Taydakov I.V., Akkuzina A.A., Avetisov R.I., Khomyakov A.V., Saifutyarov R.R., Avetissov I.C., Effective Electroluminescent Materials for Oled Applications Based on Lanthanide 1.3-Diketonates Bearing Pyrazole Moiety, J. Lumin., 177(Supplement C): 31-39 (2016).
[8] Ogawa J.-i., Agrawal S., Koumura N., Mori S., Structural Effects of the Donor Moiety on Reduction Kinetics of Oxidized Dye in Dye-Sensitized Solar Cells, J. Phys. Chem. C, 120(7): 3612-3618 (2016).
[9] Bella F., Gerbaldi C., Barolo C., Gratzel M., Aqueous Dye-Sensitized Solar Cells, Chem. Soc. Rev., 44(11): 3431-3473 (2015).
[10] Gondek E., Photovoltaic Solar Cells Based on Pyrazole Derivative, Mater. Lett., 112: 94-96 (2013).
[11] Lanke S.K., Sekar N., Pyrazole Based Nlophores: Synthesis, Photophysical, DFT, TDDFT Studies, Dyes Pigm., 127: 116-127 (2016).
[13] Rupnar B.D., Kachave T.R., Jawale P.D., Shisodia S.U., Pawar R.P., Microwave-Assisted, Cesium Carbonate Catalyzed Mild and Efficient Synthesis of Pyranochromenes, Der Pharma Chemica, 9(11): 120-124 (2017).
[14] Lee K.H., Park M.H., Seo B.M., Seo J.H., Kim Y.K., Yoon S.S., Diphenylaminoarene/Chromene-Containing Red Fluorescent Emitters for Organic Light-Emitting Diodes, Molecular Crystals and Liquid Crystals, 550(1): 260-269 (2011).
[15] Lee K.H., Hwang J.S., Park M.H., Kwon H.J., Kim Y.K., Yoon S.S., Synthesis and Electroluminescent Properties of T-Butylated 2-(2-(4-(Diarylamino) Styryl)-4h-Chromen-4-Ylidene)Malononitrile Derivatives for Oled, Molecular Crystals and Liquid Crystals, 550(1): 250-259 (2011).
[16] Diac A.P., Ţepeş A.-M., Soran A., Grosu I., Terec A., Roncali J., Bogdan E., Indenopyrans - Synthesis and Photoluminescence Properties, Beilstein J. Org. Chem., 12: 825–834 (2016).
[17] Godumala M., Choi S., Park S.Y., Cho M.J., Kim H.J., Ahn D.H., Moon J.S., Kwon J.H., Choi D.H., Chromenopyrazole-Based Bipolar Blue Host Materials for Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes, Chem. Mater., 30(15): 5005-5012 (2018).
[18] Gruhn N.E., da Silva Filho D.A., Bill T.G., Malagoli M., Coropceanu V., Kahn A., Brédas J.-L., The Vibrational Reorganization Energy in Pentacene:  Molecular Influences on Charge Transport, J. Am. Chem. Soc., 124(27): 7918-7919 (2002).
[21] Irfan A., Mahmood A., Designing of Efficient Acceptors for Organic Solar Cells: Molecular Modelling at Dft Level, J. Clust. Sci., 29(2): 359-365 (2018).
[22] Irfan A., Chaudhary A.R., Muhammad S., Al-Sehemi A.G., Bo H., Mumtaz M.W., Qayyum M.A., Tuning the Optoelectronic and Charge Transport Properties of 2,5-Di(Pyrimidin-5-Yl)Thieno[3,2-B]Thiophene by Oligocene End Cores Substitution, Results in Physics, 11: 599-604 (2018).
[23] Irfan A., Assiri M., Al-Sehemi A.G., Exploring the Optoelectronic and Charge Transfer Performance of Diaza[5]Helicenes at Molecular and Bulk Level, Org. Electron., 57: 211-220 (2018).
[24] Irfan A., Kalam A., Chaudhry A.R., Al-Sehemi A.G., Muhammad S., Electro-Optical, Nonlinear and Charge Transfer Properties of Naphthalene Based Compounds: A Dual Approach Study, Optik - Intern. J. Light Elect. Optics, 132: 101-110 (2017).
[25] Irfan A., Al-Sehemi A.G., Chaudhry A.R., Muhammad S., First-Principles Study of the N-Channel Thiophene Based Heterocyclic Chalcones, Optik - Intern. J. Light Elect. Optics, 138: 349-358 (2017).
[26] Singh B., Singh R., Singh B., Kumar D., Computational Investigation of Structure and Reactivity of Methyl Hydrazinecarbodithioate, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(2): 117-131 (2018).
[27] Demirtaş G., Dege N., Ağar E., Şahin S., The Crystallographic, Spectroscopic and Theoretical Studies on (E)-2-[((4-Fluorophenyl)Imino)Methyl]-4-Nitrophenol and (E)-2-[((3-Fluorophenyl)Imino)Methyl]-4-Nitrophenol Compounds, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(5): 55-65 (2018).
[29] Shkir M., Irfan A., AlFaify S., Shankaragouda Patil P., Al-Sehemi A.G., Linear, Second and Third-Order Nonlinear Optical Properties of Novel Noncentrosymmetric Donor-Acceptor Configure Chalcone Derivatives: A Dual Approach Study, Optik, 199: 163354 (2019).
[30] Irfan A., Mahmood A., Al-Sehemi A.G., Ahmad F., Experimental and Theoretical Study of Planar Small Molecule Acceptor for Organic Solar Cells, J. Mol. Struct., 1196: 169-175 (2019).
[31] Irfan A., Chaudhry A.R., Al-Sehemi A.G., Assiri M.A., Ullah S., Exploration of Optoelectronic and Photosensitization Properties of Triphenylamine-Based Organic Dye on Tio2 Surfaces, J. Comput. Electron.:  (2019).
[32] Irfan A., Chaudhry A.R., Al-Sehemi A.G., Assiri M.A., Hussain A., Charge Carrier and Optoelectronic Properties of Phenylimidazo[1,5-a]Pyridine-Containing Small Molecules at Molecular and Solid-State Bulk Scales, Comp. Mater. Sci., 170: 109179 (2019).
[33] Irfan A., Al-Sehemi A.G., Assiri M.A., Mumtaz M.W., Exploring the Electronic, Optical and Charge Transfer Properties of Acene-Based Organic Semiconductor Materials, Bull. Mater. Sci., 42(4): 145 (2019).
[36] Irfan A., Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers
by Long-Range Corrected Functional, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33(2): 11-28 (2014).
[37] Becke A.D., Density-Functional Thermochemistry. Iii. The Role of Exact Exchange, J. Chem. Phys., 98(7): 5648-5652 (1993).
[38] Miehlich B., Savin A., Stoll H., Preuss H., Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett., 157(3): 200-206 (1989).
[39] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B, 37(2): 785-789 (1988).
[40] Petersson G.A., Bennett A., Tensfeldt T.G., Al-Laham M.A., Shirley W.A., Mantzaris J., A Complete Basis Set Model Chemistry. I. The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements, J. Chem. Phys., 89(4): 2193-2218 (1988).
[41] Petersson G.A., Al‐Laham M.A., A Complete Basis Set Model Chemistry. Ii. Open‐Shell Systems and the Total Energies of the First‐Row Atoms, J. Chem. Phys., 94(9): 6081-6090 (1991).
[43] Coropceanu V., Malagoli M., da Silva Filho D.A., Gruhn N.E., Bill T.G., Brédas J.L., Hole- and Electron-Vibrational Couplings in Oligoacene Crystals: Intramolecular Contributions, Phys. Rev. Lett., 89(27): 275503 (2002).
[44] Irfan A., Muhammad S., Chaudhry A.R., Al-Sehemi A.G., Jin R., Tuning of Optoelectronic and Charge Transport Properties in Star Shaped Anthracenothiophene-Pyrimidine Derivatives as Multifunctional Materials, Optik, 149: 321-331 (2017).
[45] Van Caillie C., Amos R.D., Geometric Derivatives of Excitation Energies Using Scf and Dft, Chem. Phys. Lett., 308(3): 249-255 (1999).
[46] Irfan A., Al-Sehemi A.G., Muhammad S., Chaudhry A.R., Al-Assiri M.S., Jin R., Kalam A., Shkir M., Asiri A.M., In-Depth Quantum Chemical Investigation of Electro-Optical and Charge-Transport Properties of Trans-3-(3,4-Dimethoxyphenyl)-2-(4-Nitrophenyl)Prop-2-Enenitrile, Comptes Rendus Chimie, 18(12): 1289-1296 (2015).
[48] Zhang J., Kan Y.-H., Li H.-B., Geng Y., Wu Y., Duan Y.-A., Su Z.-M., Cyano or O-Nitrophenyl? Which is the Optimal Electron-Withdrawing Group for the Acrylic Acid Acceptor of D-Π-a Sensitizers in Dsscs? A Density Functional Evaluation, J. Mol. Model., 19(4): 1597-1604 (2013).
[50] Chaudhry A.R., Ahmed R., Irfan A., Mohamad M., Muhammad S., Ul Haq B., Al-Sehemi A.G., Al-Douri Y., Optoelectronic Properties of Naphtho[2, 1-B:6, 5-B′]Difuran Derivatives for Photovoltaic Application: A Computational Study, J. Mol. Model., 22(10): 1-13 (2016).
[51] Irfan A., Al-Sehemi A.G., Chaudhry A.R., Muhammad S., Asiri A.M., The Structural, Electro-Optical, Charge Transport and Nonlinear Optical Properties of 2-[(3,5-Dimethyl-1-Phenyl-1h-Pyrazol-4-Yl)Methylidene]Indan-1,3-Dione, Optik, 127(21): 10148-10157 (2016).
[52] Irfan A., Highly Efficient Renewable Energy Materials Benzo[2,3-B]Thiophene Derivatives: Electronic and Charge Transfer Properties Study, Optik - Intern. J. Light Elect. Optics, 125(17): 4825-4830 (2014).
[53] Irfan A., Rasool Chaudhry A., G. Al-Sehemi A., Sultan Al-Asiri M., Muhammad S., Kalam A., Investigating the Effect of Acene-Fusion and Trifluoroacetyl Substitution on the Electronic and Charge Transport Properties by Density Functional Theory, J. Saudi. Chem. Soc., 20(3): 336-342 (2016).
[54] Irfan A., Al-Sehemi A.G., Rasool Chaudhry A., Muhammad S., The Structural, Electro-Optical, Charge Transport and Nonlinear Optical Properties of Oxazole (4z)-4-Benzylidene-2-(4-Methylphenyl)-1,3-Oxazol-5(4h)-One Derivative, J. King Saud Uni. - Sci., 30(1): 75-82 (2018).
[55] Preat J., Jacquemin D., Perpète E.A., Design of New Triphenylamine-Sensitized Solar Cells: A Theoretical Approach, Environ. Sci. Technol., 44(14): 5666-5671 (2010).
[56] Preat J., Michaux C., Jacquemin D., Perpète E.A., Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives, J. Phys. Chem. C, 113(38): 16821-16833 (2009).
[57] Irfan A., Pannipara M., Al-Sehemi A.G, Mumtaz M.W., Assiri M.A., Chaudhry A.R., Muhammad S.  Exploring the Effect of Electron Withdrawing Groups on Optoelectronic Properties of Pyrazole Derivatives as Efficient Donor and Acceptor Materials for Photovoltaic Devices, Z. Phys. Chem., 233(11): 1625-1644 (2019).
[58] Irfan A., Cui R., Zhang J., Hao L., Push-Pull Effect on the Charge Transfer, and Tuning of Emitting Color for Disubstituted Derivatives of Mer-Alq3, Chem. Phys., 364(1–3): 39-45 (2009).
[59] Cossi M., Scalmani G., Rega N., Barone V., New Developments in the Polarizable Continuum Model for Quantum Mechanical and Classical Calculations on Molecules in Solution, J. Chem. Phys., 117(1): 43-54 (2002).
[60] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams, Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian 16 Rev. A.03:  (2016).
 [61] Martin R.L., Natural Transition Orbitals, J. Chem. Phys., 118(11): 4775-4777 (2003).
[62] Chan R.K., Liao S.C., Dipole Moments, Charge-Transfer Parameters, and Ionization Potentials of the Methyl-Substituted Benzene–Tetracyanoethylene Complexes, Can. J. Chem., 48(2): 299-305 (1970).