Efficient Dye Removal from Aqueous Solutions Using Rhamnolipid Biosurfactants by Foam Flotation

Document Type: Research Article

Authors

Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, I.R. IRAN

Abstract

Methylene blue was efficiently removed from aqueous solution by foam flotation using a rhamnolipid biosurfactant as a dye collector. The effects of four parameters, namely, pH (1.5–11.5), frother concentration (5–65 ppm), aeration rate (2–6 L/min) and rhamnolipid to methylene blue weight ratio (0.5–6.5), on dye removal were studied and optimized using response surface methodology. Results showed that dye removal increases by increasing of all parameters; however, the nonlinear trend was observed for the effects of frother concentration and rhamnolipid to methylene blue ratio. Optimum removal conditions, resulting in about 93% dye removal, was achievedat pH value of 11.5, methyl isobutyl carbinol (MIBC) concentration of 35 ppm, airflow rate of 4 L/min, and rhamnolipid to methylene blue ratio of 3.5, after only 10 min flotation. Investigations also showed that the presence of electrolyte can significantly decrease the removal efficiency. Kinetics study revealed that the process follows the first-order model with a rate constant of about 0.288 secThis study demonstrates that rhamnolipid could be considered as a potentially efficient and environment-friendly collector for the treatment of dye contaminated wastewater. 

Keywords

Main Subjects


[1] Liu G., Hu Z., Guan R., Zhao Y., Zhang H., Zhang B., Efficient Removal of Methylene Blue in Aqueous Solution by Freeze-Dried Calcium Alginate Beads, Korean J. Chem. Eng., 33(11): 3141-3148 (2016).

[2] Varghese S.P., Babu A.T., Babu B., Antony R., γ-MnOOH Nanorods: Efficient Adsorbent for Removal of Methylene Blue from Aqueous Solutions, J. Water Process. Eng., 19: 1-7 (2017).

[3] Yu J-X., Wang L-Y., Chi R-A., Zhang Y-F., Xu Z-G., Guo J., Removal of Cationic Dyes: Basic Magenta and Methylene Blue from Aqueous Solution by Adsorption on Modified Loofah, Res. Chem. Intermediat., 39(8): 3775-3790 (2013).

[5] Dardouri S., Sghaier J., Adsorptive Removal of Methylene Blue from Aqueous Solution Using Different Agricultural Wastes as Adsorbents, Korean J. Chem. Eng., 34(4): 1037-1043 (2017).

[6] Dogen M., Abak H., Alkan M., Adsorption of Methylene Blue onto Hazelnut Shell: Kinetics and Mechanism and Adsorptive Energy, J. Hazard. Mater., 164: 172-181 (2009).

[7] Tamez Uddin M., Akhtarul Islam M., Mahmud S., Rukanuzzaman M., Adsorptive Removal of Methylene Blue by Tea Waste, J. Hazard. Mater., 164: 53-60 (2009).

[8] Davarnejad R., Karimi Dastnayi Z., Cd (II) Removal from Aqueous Solutions by Adsorption on Henna and Henna with Chitosan Microparticles Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), In Press, (2018).

[9] Huang Q., Liu M., Chen J., Wan Q., Tian J., Huang L., Jiang R., Deng F., Wen Y., Zhang X., Wei Y., Marrying the Mussel Inspired Chemistry and Kabachnik–Fields Reaction for Preparation of SiO2 Polymer Composites and Enhancement Removal of Methylene Blue, Appl. Surf. Sci., 422: 17-27 (2017).

[10] Jamwal H.S., Kumari S., Chauhan G.S., Reddy N.S., Ahn J.H., Silica-Polymer Hybrid Materials as Methylene Blue Adsorbents, J. Environ. Chem. Eng., 5(1): 103-113 (2017).

[11] Sezer G.G., Yeşilel O.Z., Şahin O., Arslanoğlu H., Erucar I., Facile Synthesis of 2D Zn(II) Coordination Polymer and its Crystal Structure, Selective Removal of Methylene Blue and Molecular Simulations, J. Mol. Struct., 1143: 355-361 (2017).

[12] Choy K.K.H., McKay G., Sorption of Metal Ions from Aqueous Solution Using Bone Charcoal, Environ. Int., 31: 845-854 (2005).

[13] Ghanizadeh G., Asgari G., Adsorption Kinetics and Isotherm of Methylene Blue and its Removal from Aqueous Solution Using Bone Charcoal, React. Kinet. Mech. Cats., 102(1): 127-142, (2016).

[15] Beakou B.H., El-Hassani K., Houssaini M.A., Belbahloul M., Oukani E., Anouar A., Novel Activated Carbon from Manihot Esculenta Crantz for Removal of Methylene Blue, Sustain. Environ. Res., 27(5): 215-222 (2017).

[16] Pathania D., Sharma S., Singh P., Removal of Methylene Blue by Adsorption onto Activated Carbon Developed from Ficus Carica Bast, Arab. J. Chem., 10: S1445-S1451 (2017).

[18] Ghosh D., Bhattacharyya K.G., Adsorption of Methylene Blue on Kaolinite, Appl. Clay Sci., 20: 295-300 (2002).

[19] Mehmet D., Mahir A., Aydın T., Yasemin O., Kinetics and Mechanism of Removal of Methylene Blue by Adsorption onto Perlite, J. Hazard. Mater., B109: 141-148 (2004).

[20] Al-Ghouti M.A., Khraisheh M.A.M., Ahmad M.N.M., Allen S., Adsorption Behaviour of Methylene Blue onto Jordanian Diatomite: a Kinetic Study, J. Hazard. Mater., 165: 589-598 (2009).

[21] Karaoğlu M.H., Doğan M., Alkan M., Removal of Cationic Dye by Kaolinite, Microporous Mesoporous Mater., 122: 20-27 (2009).

[22] Wang W., Wang F., Kang Y., Wang A., Enhanced Adsorptive Removal of Methylene Blue from Aqueous Solution by Alkali-Activated Palygorskite, Water Air Soil Pollut., 226(83): 1-13 (2015).

[23] Huang Q., Liu M., Chen J., Wang K., Xu D., Deng F., Huang H., Zhang X., Wei Y., Enhanced Removal Capability of Kaolin Toward Methylene Blue by Mussel-Inspired Functionalization, J. Mater. Sci., 51(17): 8116-8130 (2016).

[24] Bardajee G.R.,  Hooshyar Z., Shahidi F.E., Synthesis and Characterization of a Novel Schiff-Base/SBA-15 Nanoadsorbent for Removal of Methylene Blue from Aqueous Solutions, Int. J. Environ. Sci. Technol., 12(5): 1737-1748 (2015).

[26] Stoia M., Păcurariu C., Istratie R., Nižňanský D., Solvothermal Synthesis of Magnetic FexOy/C Nanocomposites Used as Adsorbents for the Removal of Methylene Blue from Wastewater, J. Therm. Anal. Calorim., 121(3): 989-1001 (2015).

[27] Arasteh Nodeh A., Saghi M., Khazaei Nejad M., Preparation, Characterization and Application of Nanospherical α-Fe2O3 Supported on Silica for Photocatalytic Degradation of Methylene Blue, Iran. J. Chem. Chem. Eng. (IJCCE), In Press, (2018).

[28] Păcurariu C., Paşka O., Ianoş R., Muntean S.G., Effective Removal of Methylene Blue from Aqueous Solution Using a New Magnetic Iron Oxide Nanosorbent Prepared by Combustion Synthesis, Clean Technol. Envir., 18(3): 705-715 (2016).

[29] Hu N., Liu W., Ding L., Wu Z., Yin H., Huang D., Li H., Jin L., Zheng H., Removal of Methylene Blue from its Aqueous Solution by Froth Flotation: Hydrophobic Silica Nanoparticle as a Collector,J. Nanopart. Res., 19(46): 1-12 (2017).

[30] Santos-Beltrán M., Paraguay-Delgado F., García R., Antúnez-Flores W., Ornelas-Gutiérrez C., Santos-Beltrán A., Fast Methylene Blue Removal by MoO3 Nanoparticles, J. Mater. Sci-Mater. El., 28(3): 2935-2948 (2017)

[31] Poorsadeghi S., Kassaee M., Fakhri H., Mirabedini M., Removal of Arsenic from Water Using Aluminum Nanoparticles Synthesized Through Arc Discharge Method, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 91-99 (2017).

[32] Bakhtiari G., Bazmi M., Abdouss M., Royaee S.J., Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 69-79 (2017).

[33] Swaminathan S., Muthumanickkam A., Imayathamizhan N.M., An Effective Removal of Methylene Blue Dye Using Polyacrylonitrile Yarn Waste/Graphene Oxide Nanofibrous Composite, Int. J. Environ. Sci. Technol., 12(11): 3499-3508 (2015).

[34] Kerkez Ö., Boz İ., Efficient Removal of Methylene Blue by Photocatalytic Degradation with TiO2 Nanorod Array Thin Films, React. Kinet. Mech. Cats., 110(2): 543-557 (2013).

[35] Cohen R., Exerowa D., Surface Forces and Properties of Foam Films from Rhamnolipid Biosurfactants, Adv. Colloid Interface Sci., 134–135: 24-34 (2007).

[36] Vilinska A., Rao K.H., Forssberg K.S.E., In: Dian Duo W., Chuan Yao S., Fu Liang W., Li Cheng Z., Long H. (eds.), “Proceedings of the Twenty Fourth International Mineral Processing Congress”, Beijing (2008).

[37] Farah J.Y., EL-Gendy N.S., Farahat L.A., Biosorption of Astrozone Blue Basic Dye from an Aqueous Solution Using Dried Biomass of Baker’s Yeast, J. Hazard. Mater., 148: 402-408 (2007).

[38] Su CX-H., Teng T.T., Alkarkhi A.F.M., Low L.W., Imperata Cylindrica (Cogongrass) as an Adsorbent for Methylene Blue Dye Removal: Process Optimization, Water Air Soil Pollut., 225(1941): 1-12 (2014).

[39] Cheng M., Zeng G., Huang D., Lai C., Wei Z., Li N., Xu P., Zhang C., Zhu Y., He X., Combined Biological Removal of Methylene Blue from Aqueous Solutions Using Rice Straw and Phanerochaete Chrysosporium, Appl. Microbiol. Biot., 99(12): 5247-5256 (2015).

[40] Afroze S., Sen T.K., Ang H.M., Adsorption Performance of Continuous Fixed Bed Column for the Removal of Methylene Blue (MB) Dye Using Eucalyptuss heathiana Bark Biomass, Res. Chem. Intermediat., 42(3): 2343-2364 (2016).

[41] Mulligan C.N., Wang S.L., Remediation of a Heavy Metal-Contaminated Soil by a Rhamnolipid Foam, Eng. Geol., 85: 75-81 (2006).

[44] Zhou D., Li Z., Luo X., Su J., Leaching of Rare Earth Elements from Contaminated Soils Using Saponin and Rhamnolipid Bio-Surfactant, J. Rare Earths, 35(9): 911-919 (2017).

[45] Bodagh A., Khoshdast H., Sharafi H., Zahiri H.S., Akbari Noghabi K., Removal of Cadmium(II) from Aqueous Solution by Ion Flotation Using Rhamnolipid Biosurfactant as Ion Collector, Ind. Eng. Chem. Res., 52(10): 3910-3917 (2013).

[46] Abbasi-Garravand E., Mulligan C.N., Using Micellar Enhanced Ultrafiltration and Reduction Techniques for Removal of Cr(VI) and Cr(III) from Water, Sep. Pur. Technol., 132: 505-512 (2014).

[47] El Zeftawy M.A.M., Mulligan C.N., Use of Rhamnolipid to Remove Heavy Metals from Wastewater by Micellar-Enhanced Ultrafiltration (MEUF), Sep. Pur. Technol., 77(1): 120-127 (2011).

[49] Liu Z., Yu M., Zeng G., Li M., Zhang J., Zhong H., Liu Y., Shao B., Li Z., Wang Z., Liu G., Yang X., Investigation on the Reaction of Phenolic Pollutions to Mono-Rhamnolipid Micelles Using MEUF, Environ. Sci. Pollut. Res., 24(2): 1230-1240 (2017).

[50] Khoshdast H., Sam A., Vali H., Akbari Noghabi K., Effect of Rhamnolipid Biosurfactants on Performance of Coal and Mineral Flotation, Int. Biodeter. Biodeg., 65: 1238-1243 (2011).

[51] Khoshdast H., Abbasi H., Sam A., Akbari Noghabi K., Frothability and Surface Behavior of a Rhamnolipid Biosurfactant Produced by Pseudomonas Aeruginosa MA01, Biochem. Eng. J., 64: 127-134 (2012).

[52] Yetilmezsoy K., Demirel S., Vanderbei R.J., Response Surface Modeling of Pb(II) Removal from Aqueous Solution by Pistacia Vera L.: Box–Behnken Experimental Design, J. Hazard. Mater., 171: 551-562 (2009).

[53] Montgomery D.C., “Design and Analysis of Experiments”, John Wiley & Sons, Inc., New York (2008).

[54] Özdemir G., Peker S., Helvaci S.S., Effect of pH on the Surface and Interfacial Behavior of Rhamnolipids R1 and R2, Colloids Surf. A-Physicochem. Eng. Aspects., 234: 135-143 (2004).

[56] Helvaci S.S., Peker S., Özdemir G., Effect of Electrolytes on the Surface Behavior of Rhamnolipids R1 and R2, Colloids Surf. B-Biointerfac., 35: 225-233 (2004).

[57] Medina B.Y., Torem M.L., de Mesquita L.M.S., On the Kinetics of Precipitate Flotation of Cr III Using Sodium Dodecylsulfate and Ethanol, Miner. Eng., 18: 225-231 (2005).

[58] Hanumanth G.S., Williams D.J.A., A Three-Phase Model of Froth Flotation, Int. J. Miner. Process., 34: 261-273 (1992).