Investigation of Operational Parameters on the Photocatalytic Activity of a New Type of Poly(methyl methacrylate)/Ionic Liquid-TiO2 Nanocomposite

Document Type: Research Article

Authors

1 Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, I.R. IRAN

2 Institue of Nanosciences & Nanotechnolgy, Arak University, 38156-8-8349, Arak, I.R. IRAN

Abstract

This research work intended to study some important operational parameters on the photocatalytic activity of a new type of poly(methyl methacrylate) (PMMA)/IL-TiO2 nanocomposite, prepared by microemulsion method. For the first step, it is confirmed that the prepared nanocomposite has a significant effect on photodecomposition of the Trypan Blue (TB), as an anionic hydrophilic azo dye, and good antibacterial activity against Bacillus spp., as Gram positive bacteria, under visible light. After that, the operational parameters such as TiO2 content in photocatalyst, the thickness of the nanocomposite film, visible light intensity, and pH of the solution have been studied. In order to have a precise study on the photocatalytic performance of the prepared nanocomposite, the hydroxyl radical dosage in photocatalytic experiments and oxidative stress in the antibacterial experiment have been measured. This strategy was performed to show the extreme effect of TiO2 dosage on the photocatalytic activity of the nanocomposite.

Keywords

Main Subjects


[1] Singh S., Mahalingam H., Kumar Sing P., Polymer-Supported Titanium Dioxide Photocatalysts for Environmental Remediation: A Review, Appl. Catal. A General, 462-463: 178-195 (2013).

[3] Yang M., Di Z., Lee J.K., Facile Control of Surface Wettability in TiO2/poly(methyl methacrylate) Composite Films, J. Colloid Interf. Sci., 368: 603-607 (2012).

[4] Ratova M., Mills V., Antibacterial Titania-Based Photocatalytic Extruded Plastic Films, J. Photoch. Photobio. A Chemistry, 299: 159-165 (2015).

[5] Sannino D, Vaiano V, Sacco O., Ciambelli P., Mathematical Modelling of Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation, J. Environ. Chem. Eng., 1: 56-60 (2013).

[6] Patchaiyappan A, Saran S., Devipriya S.P., Recovery and Reuse of TiO2 Photocatalyst from Aqueous Suspension Using Plant Based Coagulant - A Green Approach, Korean J. Chem. Eng., 33: 2107-2113 (2016).

[7] Sriwong C., Wongnawa S., Patarapaiboolchai O., Photocatalytic Activity of Rubber Sheet Impregnated with TiO2 Particles and Its Recyclability, Catal. Commun., 9: 213-218 (2008).

[8] Rizzoa L., Kochb J., Belgiornoa V., Andersonb M., Removal of Methylene Blue in a Photocatalytic Reactor Using Polymethylmethacrylate Supported TiO2 Nanofilm, Desalination, 211: 1-9 (2007).

[9] Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P., Kontos A.G., Dunlop P.S.M., Hamilton J.W.J.,  Byrne J.A., O‘Shea K., Entezari M.H., Dionysiou D.D., A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications, Appl. Catal. B Environmental, 125: 331-349 (2012).

[11] Janitabar Darzi S., Movahedi M., Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng. (IJCCE), 33: 55-64 (2014).

[13] Ravishankar T.N., Ramakrishnappa T., Nagabhushana H., Souza V.S., Dupont J., Nagaraju G., Hydrogen Generation and Degradation of Trypan Blue Using Fern-Like Structured Silver-Doped TiO2 Nanoparticles, New J. Chem., 39: 1421-1429 (2015).

[14] Fernandez C., Larrechi M.S., Callao M.P., An Analytical Review of Processes for Removing Organic Dyes from Wastewater Effluents, Trends Anal. Chem., 29: 1202-1211 (2010).

[16] Kasanen J., Salstela J., Suvanto M., Pakkanen T.T., Photocatalytic Degradation of Methylene Blue Dye Using Fe2O3/TiO2 Nanoparticles Prepared by Sol-Gel Method, Appl. Surf. Sci., 258: 1738–1743 (2011).

[17] Akpan U.G., Hameed B.H., Parameter Affecting the Photocatalytic Degradation of Dye Using TiO2-Based Photocatalysts: A Review, J. Hazard. Mater., 170: 520-529 (2009).

[18] Elfeky S.A., Al-Sherbini A.A., Photocatalytic Decomposition of Trypan Blue over Nanocomposite Thin Films, Kinet. Catal., 52: 391-396 (2011).

[20] Salabat A., Mirhoseini F., A Novel and Simple Microemulsion Mthod for Synthesis of Biocompatible Functionalized Gold Nanoparticles, J. Mol. Liq. 268: 849–853 (2018).

[23] Salabata A.,  Mirhoseini F., Abdoli K., A Microemulsion Route to Fabrication of Mono- and bi-Metallic Cu/Zn/-Al2O3 Nanocatalysts for Hydrogenation Reaction, Scientia Iranica C 25(3): 1364-1370 (2018).

[24] Mirhoseini F., Salabat A., Photocatalitic Filter. US Patent 20180104678 A1 (Appl No. 15/839851), 2018.

[27] Tamboli M.S., Kulkarni M.V., Rajendra H., Patil R.H., Gade W.N., Shalaka C., Navale S.N., Kale B.B., Nanowires of Silver–Polyaniline Nanocomposite Synthesized via in Situ Polymerization and Its Novel Functionality as an Antibacterial Agent, Colloid Surf. B Biointerfaces, 92: 35-41 (2012).

[28] Habibi G., Arjomandzadegan M., Tayeboon M., Didgar F., Sarmadian H., Sadrnia M., Mirhosseini F., Geravand S., Abdoli M., Comparison of Antibacterial Effects of a Carrier Produced in Microemulsion System from Aqueous Extract of Aloe Vera with Selected Antibiotics on Enterobacteriacea, Iran. J. Microbiol., 10: 334-341 (2018).

[29] Gilani S., Ghorbanpour M., Parchehbaf  Jadid  A., Antibacterial Activity of ZnO Films Prepared by Anodizing, J. Nanostruct. Chem., 6: 183–189 (2016).

[31] Brunet L., Lyon D.Y., Hotze E.M., Alvarez P.J.J., Wiesner M.R., Comparative Photoactivity and Antibacterial Properties of C60 Fullerenes and Titanium Dioxide Nanoparticles, Environ. Sci. Technol., 43: 4355-4360 (2009).

[32] Wang H., Joseph J.A., Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader, Free Radical Biol. Med., 27: 612-616 (1999).

[33] Stylidi M., Kondarides D.I., Verykios X.E., Pathways of Solar Lightinduced Photocatalytic Degradation of Azo Dyes in Aqueous TiO2 Suspensions, Appl. Catal. B Environmental, 40: 271–286 (2003).

[34] Bandara J., Mielczarski J. A., Kiwi J., Photosentized Degradation of Azo Dyes on Fe, Ti, and All Oxides. Mechanisem of Charge Transfer During the Degradation, Langmuir, 15: 7680-7687 (1999).

[35] Sangchakr B., Hisanaga T., Tanaka K., Photocatalytic Degradation of Sulfonated Aromatics in TiO2 Suspension, J. Photochem Photobiol. A Chemistry, 85: 187-190 (1995).

[37] Daneshvar N., Salari D., Khataee, A.R., Photocatalytic Degradation of Azo Dye Acid Red 14 in Water: Investigation of the Effect of Operational Parameters, J. Photochem. Photobiol. A Chemistry, 157: 111–116 (2003).

[38] Seddigi Z.S., Ahmed S.A., Bumajdad A., Danish E.Y., Shwaky A.M., Gondal V., Soylak M., The Efficient Photocatalytic Degradation of Methyl Tert-Butyl Ether under Pd/Zno and Visible Light Irradiation, Photochem. Photobiol., 91: 265-271 (2015).

[39] Reutergårdh L.B., Iangphasuk M., Photocatalytic Decolourization of Reactive Azo Dye: a Comparison Between TiO2 and CdS Photocatalysis, Chemosphere, 35: 585-596 (1997).

[40] Poulios I., Tsachpinis I., Photodegradation of the Textile Dye Reactive Black 5 in the Presence of Semiconducting Oxides, J. Chem. Technol. Biotechnol., 74: 349-357 (1995).

[41] Hernández-Gordillo A., Romero  A.G., Tzompantzi F., Oros-Ruiz S., Gómez R., Visible Light Photocatalytic Reduction of 4-Nitrophenol Using cds in the Presence of Na2SO3, J. Photoch. Photobio. A Chemistry, 257: 44-49 (2013).

[42] Matsunaga T., Tomoda R., Nakajima T., Wake H., Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders, FEMS Microbiol. Lett., 29: 211–214 (1985).

[43] Robertson P.K.J., Robertson J.M.C., Bahnemann D.W., Removal of Microorganisms on Their Chemical Metabolites from Water Using Semiconductor Photocatalysis, J. Hazard. Mater., 211-212: 161-171 (2012).

[44] Dunlop P.S.M., Sheeran C.P., Byrne J.A., McMahon M.A.S., Boyle M.A., McGuigan K. G., Inactivation of Clinically Relevant Pathogens by Photocatalytic Coatings, J. Photoch. Photobio. A Chemistry, 216, 303-310 (2012).

[45] Foster H., Ditta I., Varghese S., Steele V., Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity, Appl. Microbiol. Biotechnol., 90: 1847-1868 (2011).

[46] Nadtochenko V., Denisov N., Sarkisov O., Gumy D., Pulgarin C., Kiwi J., Laser Kinetic Spectroscopy of the Interfacial Charge Transfer between Membrane Cell Walls of E. Coli and TiO2, J. Photochem. Photobiol. A Chemistry, 181: 401-407 (2006).

[47] Hebeish  A.A., Abdehady M.M., Youssef  A.M., TiO2 Nanowire and TiO2 Nanowire Doped Ag-PVP Nanocomposite for Antimicrobial and Self-Cleaning Cotton Textile, Carbohyd. Polym., 91: 549-559 (2013).

[48] Pablos C., J. Marugán J., vanGrieken R., Serrano E., Emerging Micropollutant Oxidation During Disinfection Processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2, Water Res., 47: 1237–1245  (2013).

[51] Boomi P., Prabu H.G., Mathiyarasu J., Synthesis, Characterization and Antibacterial Activity of Polyaniline/Pt-Pd Nanocomposite, Eur. J. Med. Chem., 72: 18-25 (2014).

[52] Salabat A., Farid Mirhoseini F., Mohammad Arjomandzadegan M.,  Jiryaei E., A Novel Methodology for Fabrication of Ag–Polypyrrole Core–Shell Nanosphere Using Microemulsion System and Evaluation of Its Antibacterial Application, New J. Chem., 41: 12892-12900 (2017).

[53] Mirhoseinia F., Alireza Salabata A., Antibacterial Activity Based poly(methyl methacrylate) Supported TiO2 Photocatalyst Film Nanocomposite, Tech. J. Engin. App. Sci., 5 (1): 115-118 (2015).

[54] Alireza Salabata A., Mirhoseinia F., Masoumia Z., Mahdie M.,Preparation and Characterization of Polystyrene-Silver Nanocomposite Using Microemulsionmethod and Its Antibacterial Activity,JNS, 4: 377-382 (2014).