Synthesis, Characterization, Computational Studies, and Evaluation of Neuroprotective Effects of New Piperazine Compounds

Document Type : Research Article

Authors

1 University of Applied Science and Technology, Arak, I.R. IRANN

2 Department of Biology, Arak University, Arak, I.R. IRAN

3 Department of Chemistry, Arak University, Arak, I.R. IRAN

Abstract

The new piperazine-based Schiff base hydrazone with N, O donor set of atoms, LPE, has been prepared by the condensation reaction of new piperazine-based diamine, APE, with salicylaldehyde. The structure of newly prepared compounds was characterized by using FT-IR, UV-Vis, 1H NMR, and 13C{1H]-spectroscopic methods as well as elemental analysis data. Furthermore, the structure of piperazine-based compounds, APE and LPE, has been optimized and the geometrical structures of a diamine compound, APE, and Calcium atom have been investigated at the level of density functional theory (DFT). The 6-311++G(d,p) basis set was utilized for ligands in the gas phase. The optimized structures contain N…Ca interactions and piperazine rings have boat structure in most of them.  The chelating structures of piperazine rings show most stabilization among other interactions, the stabilization energy is -1493.9667 kJ mol-1. Also, the prepared compounds were evaluated for preventive effect on apoptotic motor neurons in adult mouse spinal cord slices. The APE inhibited apoptosis in the motor neurons and significantly increased viability in these neurons.

Keywords

Main Subjects


[1] Mao Z., Zheng X., Qi Y., Zhang M., Huang Y., Wan C., Rao G., Synthesis and Biological Evaluation of Novel Hybrid Compounds Between Chalcone and Piperazine as Potential Antitumor Agents, J. RSC Adv., 6: 7723-7727 (2016).
[2] Kazemi S., Ghaemi A.,  Tahvildari K., Chemical Absorption of Carbon Dioxide Into Aqueous Piperazine Solutions Using a Stirred Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 253-267 (2020). 
[3] Mao A.W., Zheng X., Lin Y.P., Hu C.Y., Wang X.L., Wan C.P., Rao G.X., Design, Synthesis and Anticancer Activity of Novel Hybrid Compounds Between Benzofuran and N-Aryl Piperazine: Biological Activity and Synthesis, Bioorg. Med. Chem. Lett., 26: 3421-3424 (2016).
[4] Mazari S.A., Ali B.S., Jan B.M., Saeed I.M., Degradation Study of Piperazine, Its Blends and Structural Analogs for CO2 Capture: A Review, Int. J. greenth Gas Con., 31: 214-228 (2014).
[5] Lee C.C., Hsu S.C., Lai L.L., Lu K.L., Chair-Boat Form Transformation of PiperazineContaining Ligand Toward the Preparation of Dirhenium Metallacycles, Inorg. Chem., 48: 6329-6331 (2009).
[6] Nagy P.I., Maheshwari A., Kim Y.-W., Messer W.S., Theoretical and Experimental Studies of the Isomeric Protonation In Solution for a Prototype Aliphatic Ring Containing Two Nitrogens, J. Phys. Chem. B., 114: 349-360 (2010).
[7] Samie N., Muniandy S., Kanthimathi M.S., Haerian B.S., Mechanism of action of Novel Piperazine Containing a Toxicant Against Human Liver Cancer Cells, Peer J., 4: e1588 (2016).
[8] Pu S.Z., Sun Q., Fan C.B., Wang R.J., Liu G., Recent Advances in Diarylethene-Based Multi-Responsive Molecular Switches, J. Mater. Chem. C., 4: 3075-3093 (2016).
[9] Chen Y., Wang X.C, Xu Y.C., Xu H.L., Yuan H., Tong J.T., Xiao D.R., Syntheses, Structures and Magnetism of four Ni(II)/Co(II) Interpenetrating Coordination Polymers Based on 1,4-bis(4-(imidazole-1-yl)benzyl)piperazine, Inorganica Chimica Acta, 451: 1-7 (2016).
[10] Moisescu-Goia C., Muresan-Pop M., Simon V., New Solid State Forms of Antineoplastic 5-Fluorouracil with Anthelmintic Piperazine, J. Mol. Struct., 1150: 37-43 (2017).
[11] Bogdanov E.V., Vazykhova A.M., Khasiyatullina N.R., Krivolapov D.B., Dobrynin A.B., Voloshina A.D., Mironov V.F., New N-Mannich Bases Obtained From Isatin and Piperazine Derivatives: the Synthesis and Evaluation of Antimicrobial Activity, Chem. Heterocycl. Compd., 52(1): 25-30 (2016).
[13] Sadashiva C.T., Narendra Sharath Chandra J.N., Ponnappa K.C., Veerabasappa Gowda T., Rangappa K.S., Synthesis and Efficacy of 1-[Bis(4-Fluorophenyl)-Methyl]Piperazine Derivatives for Acetylcholinesterase Inhibition, as a Stimulant of Central Cholinergic Neurotransmission in Alzheimer's Disease, Bioorg Med Chem Lett, 16: 3932-6 (2006).
[14] Nozawa D., Okubo T., Ishii T., Takamori K., Chaki S., Okuyama S., Nakazato A., Novel Piperazines: Potent Melanocortin-4 Receptor Antagonists with Anxiolytic-Like Activity, Bioorg Med Chem, 15: 2375-85 (2007).
[17] Chander S., Ashok P., Reguera R.M., Perez-Pertejo M.Y., Carbajo-Andres R., Balana-Fouce R., Gowri K.V., Sekhar C., Sankaranarayanan M., Synthesis and Activity of Benzopiperidine, Benzopyridine and Phenyl Piperazine Based Compounds Against Leishmania Infantum, Exp. Parasitol., 189: 49-60 (2018).
[18] Guo J., Tao H., Alasadi A., Huang Q., Jin S., Niclosamide Piperazine Prevents High-Fat Diet-Induced Obesity and Diabetic Symptoms in Mice, Eat Weight Disord-ST., 24(1): 91-96 (2019).
[19] Cardosi M., Kirkwood S., Electron transfer agent, US Patent App. 15/569,901, (2018)
[21] Saadeh H.A.,  Khasawneh M.A.,  Abu‐Zeid Y.A., El‐Haty  E.A., Mubarak M.S., Pechangou Nsangou S.,  Goyal  K., Sehgal R., Marco‐Contelles J.,  Samadi A., Novel 5‐Nitroimidazole and 5‐Nitrothiazole Piperazine Derivatives and Their Antiparasitic Activity, ChemistrySelect, 2(20): 5684-5687 (2017).
[22] El-Sherif A.A., Shehata M. R., Shoukry M.M., Mahmoud N., Potentiometric Study of Speciation and Thermodynamics of Complex Formation Equilibria of Diorganotin(IV) Dichloride with 1-(2-Aminoethyl)piperazine, J Solution Chem., 45(3): 410–430(2016).
[23] Özbek N., Mamaş S., Erdoğdu T., Alyar S., Kaya K., Karacan N., Synthesis, Characterization, DFT Studies of Piperazine Derivatives And its Ni(II), Cu(II) Complexes as Antimicrobial Agents and Glutathione Reductase Inhibitors, J. Mol. Struct., 1171: 834-842 (2018).
[24] Bjelogrlić S., Todorović T.R., Cvijetić I., Rodić M.V., Vujčić M., Marković S., AraškovJ., Janović B., Emhemmed F., Muller C.D., Filipović N.R., A Novel Binuclear Hydrazone-Based Cd(II) Complex is a Strong Pro-Apoptotic Inducer with Significant Activity Against 2D and 3D Pancreatic Cancer Stem Cells, J. Inorg. Biochem, 190: 45-66 (2019).
[26] Dolè Kerim M., El Kaïm L., Piperazine as Leaving Group in A3 Adducts: Fast Access to Alkynyl Indoles, Synlett, 27(10): 1572-1576 (2016).
[29] Keypour H., Rezaeivala M., Valencia L., Pérez-Lourido P., Synthesis and Crystal Structure of Mn (II) Complexes with Novel Macrocyclic Schiff-Base Ligands Containing Piperazine Moiety, Polyhedron, 27: 3172-3176 (2008).
[30] Khedhiri L., Mi J.X., Rzaigui M., Nasr B., Synthesis, Crystal Structure and Magnetic Properties of 1-(2,5-dimethylphenyl)piperazine-1,4-dium tetrachloridocuprate(II), J. Chem. Sci. 128(6): 905–911 (2016).
[31] Keypour H., Mahmoudabadi M., Shooshtari A., Bayat M., Karamian R., Asadbegy M., William Gable R., Synthesis, Crystal Structure, Theoretical Studies and Biological Properties of Three Novel Trigonal Prismatic Co(II), Ni(II) and Cu(II) Macroacyclic Schiff Base Complexes Incorporating Piperazine Moiety, ‎Inorganica Chim. Acta, 478: 176-186 (2018).
[32] Sayin S., Soner Engin M., Eymur S., Çay S., Synthesis and Characterization of 1-(2-Furoyl) Piperazine Calix[4]arene for the Preconcentration of Metal Ions, Anal. Lett., 51: 111-118 (2017).
[33] Almotawa R.M., Aljomaih G., Vargas Trujillo D., N. Nesterov V., Rawashdeh-Omary M.A., New Coordination Polymers of Copper(I) and Silver(I) with Pyrazine and Piperazine: A Step Toward “Green” Chemistry and Optoelectronic Applications, Inorg. Chem., 57(16): 9962-9976 (2018).
[34] O'BoyleN.M., Ana G., Kelly P.M., Nathwani S.M., Noorani S., Fayne D., Bright S.A., Twamley B.,  Zisterer D.M., Meegan M.J., Synthesis and Evaluation of Antiproliferative Microtubule-Destabilising Combretastatin A-4 Piperazine Conjugates, Org. Biomol. Chem., 17: 6184-6200 (2019).
[36] Rodriguez de Barbarin C.O., Bailey N.A, Fenton D.A., He Q.Y., Zinc(II) Complexes Derived from Potentially Hexadentate (N4O2)Acyclic Ligands Containing Pyridinyl and Phenolic Groups, J. Chem. Soc., Dalton Trans., 161-166 (1997).
[37] Lachmann D., Studte  C., Männel  B., Hübner  H., Gmeiner P., König B., Photochromic Dopamine Receptor Ligands Based on Dithienylethenes and Fulgides, Chem. Eur J., 23(54): 13423-13434 (2017).
[39]  Choo H.Y., Chung B.J., Chung S.H., Synthesis of Piperazine Derivatives and Evaluation of Their Antihistamine and Antibradykinin Effects, Bioorg Med. Chem. Lett, 9: 2727-30 (1999).
[41] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, Gaussian, Inc., Pittsburgh PA, (2003).
[42] Momeni H.R., Kanje M., Calpain Inhibitors Delay Injury-Induced Apoptosis in Adult Mouse Spinal Cord Motor Neurons, Neuroreport, 17: 761-5 (2006).
[43]  Keypour H., Rezaeivala M., Valencia L., Pérez-Lourido P., Synthesis and Crystal Structure of Mn (II) Complexes with Novel Macrocyclic Schiff-Base Ligands Containing Piperazine Moiety, Polyhedron, 27: 3172-3176 (2008).
[44] Khanmohammadi H., Abnosi M.H., Hosseinzadeh A., Erfantalab M., Synthesis, Biological and Computational Study of New Schiff Base Hydrazones Bearing 3-(4-pyridine)-5-mercapto-1,2,4-triazole Moiety, Spectrochim Acta A Mol Biomol Spectrosc, 71: 1474-80 (2008).
[45] Krishnakumar V., Xavier R.J., FT Raman and FT-IR Spectral Studies of 3-mercapto-1,2,4-triazole, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 60: 709-14 (2004).
[47] Sallem W., Serradji N., Dereuddre-Bosquet N., Dive G., Clayette P., Heymans F., Structure-Activity Relationships in Platelet-Activating Factor. Part 14: Synthesis and Biological Evaluation of Piperazine Derivatives with Dual Anti-PAF and Anti-HIV-1 activity, Bioorg. Med. Chem., 14: 7999-8013 (2006).
[48] Holst C.M., Frydman B., Marton L.J., Oredsson S.M., Differential Polyamine Analogue Effects in Four Human Breast Cancer Cell Lines, Toxicology, 223: 71-81 (2006).
[49] Harada J., Sugimoto M., Polyamines Prevent Apoptotic Cell Death in Cultured Cerebellar Granule Neurons, Brain. Res., 753: 251-9 (1997).
[50] Ray S.K., Hogan E.L., Banik N.L., Calpain in the Pathophysiology of Spinal Cord Injury: Neuroprotection with Calpain Inhibitors, Brain. Res. Rev., 42: 169-185 (2003).
[51] Kajitani N., Kobuchi H., Fujita H., Yano H., Fujiwara T., Yasuda T., Utsumi K., Mechanism of A23187-Induced Apoptosis In HL-60 Cells: Dependency on Mitochondrial Permeability Transition but not on NADPH Oxidase, Biosci. Biotechnol. Biochem., 71: 2701-11 (2007).