Synthesis and Characterization of Bismuth Oxide Nanoparticle by Thermal Decomposition of Bismuth-Based MOF and Evaluation of Its Nanocomposite

Document Type : Research Article

Authors

1 Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. IRAN

2 Institute for Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, I.R. IRAN

3 Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. IRAN

Abstract

Metal-Organic Frameworks (MOFs) are an important class of highly porous hybrid materials. A bismuth-based MOF was prepared under solvothermal conditions via the self-assembly of primary building blocks at 100 °C for 3 h. Bismuth oxide nanoparticles (Bi2O3 NPs) were prepared by calcination and thermal decomposition of a bismuth-based MOF at 550 °C for 5 h for the first time. The nanocomposite was prepared by poly (methyl methacrylate) (PMMA) as a polymer matrix and bismuth oxide NPs as fillers. The bismuth oxide nanoparticles were characterized by Fourier Transform InfraRed (FT-IR) for determination of functional groups, X-Ray powder Diffraction (XRD) for evaluation of crystal structure, Dynamic Light Scattering (DLS) for investigation of size and size distribution, Scanning Electron Microscope (SEM) for the presentation of morphology and size, and Energy-Dispersive X-ray Spectroscopy (EDS) for determination of chemical composition. Based on the results, the bismuth oxide nanoparticles were observed with spherical morphology and a particle size of 60 nm. The bismuth oxide nanocomposites were evaluated by X-ray dosimeter test in comparison to lead and aluminum and air adsorbents for X-ray shielding, Diffuse Reflection Spectroscopy (DRS) for UltraViolet (UV) blocking, and antibacterial activity against Salmonella bacterial. Based on the results, the X-ray shielding is 31.9% compared with the lead with a thickness of 0.25 mm and 81.53% compared with aluminum with a thickness of 3 mm for the bismuth oxide nanocomposite. This nanocomposite has 70% UV blocking with antibacterial activity and it can have a good potential for biomedical and industrial applications.

Keywords

Main Subjects


[1] Rowsell J.L.C., Yaghi O.M., Metal-Organic Frameworks: A New Class of Porous Materials, Micropor Mesopor Mat., 73: 3–14 (2004).
[2] Li H., Eddaoudi M., O’Keeffe M., Yaghi O., Design and synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework, Nature., 402: 276–279 (1999).
[3] Khan N.A., Hasan Z., Jhung S.H., Beyond Pristine Metal-Organic Frameworks: Preparation and Application of Nanostructured, Nanosized, and Analogous MOFs, Coord. Chem. Rev., 376: 20–45 (2018).
[4] Czaja A.U., Trukhan N., Muller U., Industrial Applications of Metal-Organic Frameworks, Chem. Soc. Rev., 38: 1284–1293 (2009).
[5] Sosa J.D., Bennett T.F., Nelms K.J., Liu B.M., Tovar R.C., Liu Y., Metal-Organic Framework Hybrid Materials and Their Applications, Crystals., 8: 325-348 (2018).
[6] Chen B., Xiang S., Qian G., Metal−organic Frameworks with Functional Pores for Recognition of Small Molecules, Acc. Chem. Res., 43(8): 1115-1124 (2010).
[7] Motakef-Kazemi N., Shojaosadati S.A., Morsali A., Evaluation of the Effect of Nanoporous Nanorods Zn2(bdc)2(dabco) Dimension on Ibuprofen Loading and Release, JICS., 13(7): 1205-1212 (2016).
[8] Motakef-Kazemi, N., Shojaosadati, S.A., Morsali, A., In Situ Synthesis of a Drug-Loaded MOF at Room Temperature, Micropor Mesopor Mat., 186: 73-79 (2014).
[9] Tranchemontagne D.J., Hunt J.R., Yaghi O.M., Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron., 64: 8553–8557 (2008).
[10] Zhou H.C., Long J.R., Yagh, O.M., Introduction to Metal–Organic Frameworks, Chem Rev., 112(2): 673–674 (2012).
[11] Yuan S., Feng L., Wang K., Pang J., Bosch M., Lollar C., Sun Y., Qin J., Yang X., Zhang P., Wang Q., Zou L., Zhang Y., Zhang L., Fang Y., Li J., Zhou H.C., Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv Mater., 30(37): 1704303 (2018).
[12] Mehmandous M.R., Motakef-Kazemi N., Ashouri F., Nitrate Adsorption from Aqueous Solution by Metal–Organic Framework MOF-5, IJSTS., 1-7 43(2): 443–449 (2019).
[13] Thirumurugan A., Cheetham A.K., Anionic Metal-Organic Frameworks of Bismuth Benzenedicarboxylates: Synthesis, Structure and Ligand-Sensitized Photoluminescence, Eur. J. Inorg. Chem., 2010(24): 3823–3828 (2010).
[14] Savage M., Yang S., Suyetin M., Bichoutskaia E., Lewis W., Blake A.J., Barnett S.A., Schrçder M.,
A Novel Bismuth-Based Metal-Organic Framework for High Volumetric Methane and Carbon Dioxide Adsorption. Chem. Eur. J., 20: 8024–8029 (2014).
[15] Ataei F., Dorranian D., Motakef-Kazemi, N., Bismuth-Based Metal-Organic Framework Prepared by Pulsed Laser Ablation Method In Liquid, J. Theor. Appl. Phys., 14:1–8 (2020).
[16] Wang G., Sun Q., Liu Y., Huang B., Dai Y., Zhang X., Qin X., A Bismuth-Based Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst, Chem Eur J., 21: 2364–2367 (2015).
[17] Savage M., Yang S., Suyetin M., Bichoutskaia E., Lewis W., Blake A.J., Barnett S.A., Schrçder M., A Novel Bismuth‐Based Metal-Organic Framework for High Volumetric Methane and Carbon Dioxide Adsorption, Chem. Eur. J., 20: 1-14 (2014).
[18] Solanki, P.R., Singh, J., Rupavali, B., Tiwari, S., Malhotr, B.D., Bismuth Oxide Nanorods Based Immunosensor for Mycotoxin Detection, Mater. Sci. Eng. C., 70: 564–571 (2017).
[19] Xia F., Xu X., Li X., Zhang L., Zhang L., Qiu H., Wang W., Liu Y., Gao J., Preparation of Bismuth Nanoparticles in Aqueous Solution and its Catalytic Performance for the Reduction of 4-Nitrophenol, Ind. Eng. Chem. Res., 53(26):10576–10582 (2014).
[20] La J., Huang Y., Luo G., Lai J., Liu C., Chu G., Synthesis of Bismuth Oxide Nanoparticles by Solution Combustion Method, Particul. Sci. Technolo., 31(3): 287-290 (2012).
[21] Wu, J., Qin, F., Lu, Z., Yang, H.J., Chen, R., Solvothermal Synthesis of Uniform Bismuth Nanospheres Using poly(N-vinyl-2-pyrrolidone) as a Reducing Agent. Nanoscale Res. Lett., 6(1): 66 (2011).
[23] Torrisi L., Silipigni L., Restuccia N., Cuzzocrea S., Cutroneo M., Barreca F., Fazio B., Di Marco G., Guglielmino S., Laser-Generated Bismuth Nanoparticles for Applications in Imaging and Radiotherapy, J. Phys. Chem. Solids., 119: 62-70 (2018).
[24] Nazari P., Faramarzi M.A., Sepehrizadeh Z., Mofid M.A., Bazaz R.D., Shahverdi A.R., Biosynthesis of Bismuth Nanoparticles Using Serratia Marcescens Isolated from the Caspian Sea and Their Characterization, IET Nanobiotechnol., 6(2): 58-62 (2012). 
[25] Mallahi M., Shokuhfar A., Vaezi M.R., Esmaeilirad A., Mazinani V., Synthesis and Characterization of Bismuth Oxide Nanoparticles Via Sol-Gel Method AJER., 3(4): 162-165 (2014).
[26] Mädler, L., Pratsinis, S.E., Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis, J. Am. Ceram. Soc., 5(7): 1713–1718 (2004).
[27] Carotenuto, G., Hison, C.L., Capezzuto, F., Palomba, M., Synthesis and Thermoelectric Characterization of Bismuth Nanoparticles, J. Nanopart. Res., 11(7): 1729-1738 (2009).
[28] Schulz S., Heimann S., Wölper C., Assenmacher W., Synthesis of Bismuth Pseudo Cubes by Thermal Decomposition of Bi2Et4. Chem Mater., 24 (11): 2032–2039 (2012). 
[29] Huang, Y.J., Zheng, Y.Q., Zhu, H.L., Wang, J.J. Hydrothermal Synthesis of Bismuth(III) Coordination Polymer and its Transformation to Nano α-Bi2O3 for Photocatalytic DegradationJ. Solid. State. Chem.,239: 274-281 (2016).
[31] Zhang L., Hu Y.H., A systematic Investigation of Decomposition of Nano Zn4O(C8H4O4)3 Metal−Organic Framework, J. Phys. Chem. C., 114(6): 2566-2572 (2010).
[33] Bagchi V., Bandyopadhyay D., In situ Generation of Palladium Oxide Nano-Crystals, J. Organomet. Chem., 694: 1259-1262 (2009).
[34] Shirkhanloo H., Saffari M., Amini S.M., Rashidi M., Novel semisolid Design Based on Bismuth Oxide (Bi2O3) Nanoparticles for Radiation Protection. Nanomed. Res. J., 2(4): 230-238 (2017).
[35] Jiao L., Li G., Deng J., Su M., Nanocellulose Templated Growth of Ultra-Small Bismuth Nanoparticles for Enhanced Radiation Therapy, Nanoscale., 10(14): 6751-6757 (2018).
[36] Oviedo M.J., Contreras O.E., Rosenstein Y., Vazquez-Duhalt R., Macedo Z.S., Carbajal-Arizaga G.G., Hirata G.A., New Bismuth Germanate Oxide Nanoparticle Material for Biolabel Applications in Medicine, J. Nanomater.,2016: 1-10 (2016).
[37] Yang C., Guo C., Guo W., Zhao X., Liu S., Han X., Multifunctional Bismuth Nanoparticles as Theranostic Agent for PA/CT Imaging and NIR Laser-Driven Photothermal Therapy, ACS Appl Nano Mater., 1(2): 820–830 (2018).
[38] Liu L., Wang L., Yin H., Li Y., He X., The Preparation and Application of Bismuth (III) Ion‐Selective Electrode Based on Nanoparticles of Bismuth Sulfide, Anal Lett.,39(5): 879-890 (2007).
[39] Jarka P., Tanskia T., Matysiaka W., Krzeminskia L., Hajduk B., Bilewicz M., Manufacturing and investigation of Surface Morphology and Optical Properties of Composite Thin Films Reinforced by TiO2, Bi2O3 and SiO2 Nanoparticles, Appl. Surf. Sci.,424(2): 206-212 (2017).
[40] Tian Y., Toudert J., Nanobismuth: fabrication, Optical, and Plasmonic Properties-Emerging Applications, J. Nanotechnol., 2018: 1-23 (2018).
[41] Wang Y.W., Hong B.H., Kim K.S., Size Control of Semimetal Bismuth Nanoparticles and the UV−Visible and IR Absorption Spectra, J. Phys. Chem. B.,109(15): 7067-7072 (2005).
[42] Vega-Jiménez A.L., Almaguer-Flores A., Flores-Castañeda M., Camps E., Uribe-Ramírez M., Aztatzi-Aguilar O.G., De Vizcaya-Ruiz A., Bismuth Subsalicylate Nanoparticles with Anaerobic Antibacterial Activity for Dental Applications, Nanotechnology., 28(43): 435101 (2017).
[43] Raza W., Haque M.M., Muneer M., Harada T., Matsumura M., Synthesis, Characterization and Photocatalytic Performance of Visible Light-Induced Bismuth Oxide Nanoparticle, J Alloy Compd., 648: 641-650 (2015).
[44] Wall B.F., Kendall G.M., Edwards AA.., Bouffler S., Muirhead C.R., Meara J.R., What are the Risks from Medical X-Rays and other Low Dose Radiation? Br. J. Radiol., 79(940): 285-294 (2006).
[45] Hulbert S.M., Carlson K.A., Is Lead Dust within Nuclear Medicine Departments a Hazard to Pediatric Patients? J. Nucl. Med. Technol.,37(3): 170-172 (2009).
[46] Zhou P., Lv J., Xu H., Wang X., Sui X., Zhong Y., Wang B., Chen Z., Feng X., Zhang L., Mao Z., Functionalization of Cotton Fabric with Bismuth Oxyiodide Nanosheets: Applications for Photodegrading Organic Pollutants. UV Shielding and Self-Cleaning. Cellulose., 26(4): 2873–2884 (2019).
[47] Nambiar S., Osei E.K., Yeow J.T.W., Polymer Nanocomposite‐Based Shielding Against Diagnostic X‐Rays, J. Appl. Polym. Sci., 127(6): 4939-4946 (2012).
[48] Pavlenko V.I., Cherkashina N.I., Yastrebinsky R.N., Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites, Heliyon., 5(5): e01703 (2019).
[49] Ali U., Abd Karim K.J.B., Aziah Buang N., A Review of the Properties and Applications of Poly (methyl methacrylate) (PMMA), Polym. Rev., 55(4): 678-705 (2015).
[50] Hajiashrafi S., Motakef-Kazemi N., Green Synthesis of Zinc Oxide Nanoparticles Using Parsley Extract, Nanomed Res J., 3(1): 44-50 (2018).
[51] Perez-Mezcua D., Sirera R., Jimenez R., Bretos I., Dobbelaere C.D., Hardy A., Van Bael M.K., Calzad M.L., A UV-Absorber Bismuth(III)-Nmethyldiethanolamine Complex as a Low-Temperature Precursor for Bismuth-Based Oxide Thin FilmsJ. Mater. Chem. C., 2: 8750–8760 (2014).
[52] Becheri A., Durr M., Nostro P.L., Baglioni P., Synthesis and Characterization of Zinc Oxide Nanoparticles: Application to Textiles as UV-Absorbers, J. Nanopart. Res., 10: 679–689 (2008).
[53] Im, Y.M., Oh, T.H., Nathanael, J.A., Jang, S.S., Effect of ZnO nanoparticles Morphology on UV Blocking of Poly (vinylalcohol)/ZnO Composite Nanofibers, Mater Lett.,147: 20–24 (2015).
[54] Hossain F., Perales-Perez O.J., Hwang S., Roman F., Antimicrobial Nanomaterials as Water Disinfectant: Applications, Limitations and Future Perspectives, Sci. Total. Environ., 466-467: 1047-1059 (2014).
[55] Jassim A.M.N., Farhan S.A., Salman J.A.S., Khalaf K.J., Al Marjani M.F., Mohammed M.T., Study the Antibacterial Effect of Bismuth Oxide and Tellurium Nanoparticles, Int. J. Chem. Biol. Sci.,1(3): 81-84 (2015).
[56] Salazar-Pérez A.J., Camacho-López M.A., Morales-Luckie R.A., Sánchez-Mendieta V., Ureña-Núñez F., Arenas-Alatorre J., Structural Evolution of Bi2O3 Prepared by Thermal Oxidation of Bismuth Bano-Particles, Superf. Vacío.,18(3): 4-8 (2005).
[57] Hajiashrafi S., Motakef-Kazemi N., Preparation and Evaluation of ZnO Nanoparticles by Thermal Decomposition of MOF-5. Heliyon., 5: e02152 (2019).
[58] Sood S., Umar A., Mehta S.K., Kansal S.K., α-Bi2O3 Nanorods: An Efficient Sunlight Active Photocatalyst for Degradation of Rhodamine B and 2,4,6-Trichlorophenol, Ceram Int., 41(3): 3355-3364 (2015).
[59] Gotić, M., Popović, S., Musić, S., Influence of Synthesis Procedure on The Morphology of Bismuth Oxide Particles, Mater Lett., 61: 709–714 (2007).
[60] Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Paul, B., Dhar, S.S., Habibi-Yangjeh, A., Manikandan, A., Ramadoss, G., Fine cutting Edge Shaped Bi2O3rods/Reduced Graphene Oxide (RGO) Composite for Supercapacitor and Visible-Light Photocatalytic Applications, J. Colloid Interface Sci., 498: 449-459 (2017).
[62] Hernandez-Delgadillo R., Velasco-Arias D., Diaz D., Zumeta-Dube I., Arevalo-Niño K., Cabral-Romero C., Martinez-Sanmiguel, J.J., Bismuth oxide Aqueous Colloidal Nanoparticles Inhibit Candida Albicans Growth and Biofilm Formation, Int. J. Nanomedicine., 8: 1645–1652 (2013).