Influences of Temperature, Concentration and Shear Rate on Rheological Behavior of Nanofluid: An Experimental Study with Al2O3-MWCNT/10W40 Hybrid Nano-Lubricant

Document Type: Research Article

Authors

1 Department of mechanical Engineering, Imam Hossein University, Tehran, I.R. IRAN

2 Department of chemical Engineering, Semnan University, Semnan, I.R. IRAN

Abstract

In this experimental study, the rheological behavior of Al2O3-MWCNT (90%:10%)/10W40 hybrid nano-lubricant has been determined at the temperature range of 5°C to 55°C. Al2O3 nanoparticles (average size of 50 nm) and MWCNTs (inner and outer diameter of 2-6 nm and 5-20 nm, respectively) were dispersed in engine oil (10W40) to prepare 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1% solid volume fractions. For each sample, dynamic viscosity was measured at shear rates ranging from 666.5 s-1 to 13330 s-1 with an uncertainty of about 0.6%. The findings insinuated that at the most range of temperature and solid volume fraction the nano-lubricant,
 as well as the base oil, are non-Newtonian fluids. Thus, by curve fitting the indexes of power law and consistency were calculated. Eventually, the correlations indicated a very well compromise with experimental data.

Keywords

Main Subjects


[1] Hemmat Esfe M., Yan W.-M., Akbari M., Karimipour A., Hassani M., Experimental Study on Thermal Conductivity of DWCNT-ZnO/Water-EG Nanofluids, Int. Commun. Heat Mass Transfer, 68: 248-251 (2015).

[2] Hemmat Esfe M., Saedodin S., Akbari M., Karimipour A., Afrand M., Wongwises S.,
Safaei M.R., Dahari M., Experimental Investigation and Development of New Correlations for Thermal Conductivity of CuO/EG–Water Nanofluid, Int. Commun. Heat Mass Transfer, 65: 47-51 (2015).

[3] Hemmat Esfe M., Naderi A., Akbari M., Afrand M., Karimipour A., Evaluation of Thermal Conductivity of COOH-Functionalized MWCNTs/Water via Temperature and Solid Volume Fraction by Using Experimental Data and ANN Methods, J. Therm. Anal. Calorim, 121(3): 1273-1278 (2015).

[4] Sarafraz M.M., Hormozi F., Nikkhah V.. Thermal Performance of a Counter-Current Double Pipe Heat Exchanger Working with COOH-CNT/Water Nanofluids, Experimental Thermal and Fluid Science, 78: 41-49 (2016).

[5] Sarafraz M.M., Hormozi F., Peyghambarzadeh S.M., Thermal Performance and Efficiency of a Thermosyphon Heat Pipe Working with a Biologically Ecofriendly Nanofluid, International Communications in Heat and Mass Transfer, 57: 297-303 (2014).

[6] Hemmat Esfe M., Saedodin S., Naderi A., Alirezaie A., Karimipour A., Wongwises S., Goodarzi M.,
bin Dahari M., Modeling of Thermal Conductivity of ZnO-EG Using Experimental Data and ANN Methods, Int. Commun. Heat Mass Transfer, 63: 35-40 (2015).

[8] Sarafraz M.M., Hormozi F., Peyghambarzadeh S.M., Role of Nanofluid Fouling on Thermal Performance of a Thermosyphon: Are Nanofluids Reliable Working Fluid?. Applied Thermal Engineering, 82: 212-224 (2015).

[9]  Hemmat Esfe M., Saedodin S., Asadi A., An Empirical Investigation on the Dynamic Viscosity of Mg (OH) 2–Ethylene Glycol in Different Solid Concentrations and Proposing New Correlation Based on Experimental Data, International Journal of Natural and Engineering Sciences, 8(3): 29-34 (2014).

[11] Hemmat Esfe M., Wongwises S., Naderi A., Asadi A., Safaei M.R., Rostamian H., Dahari M., Karimipour A., Thermal Conductivity of Cu/TiO 2–Water/EG Hybrid Nanofluid: Experimental Data and Modeling Using Artificial Neural Network and Correlation, Int. Commun. Heat Mass Transfer, 66: 100-104 (2015).

[12] Hemmat Esfe M., Rostamian H., Afrand M., Karimipour A., Hassani M., Modeling and Estimation of Thermal Conductivity of MgO–Water/EG (60: 40) by Artificial Neural Network and Correlation, Int. Commun. Heat Mass Transfer, 68: 98-103 (2015).

[13] Hemmat Esfe M., Motahari K., Sanatizadeh E., Afrand M., Rostamian H., Hassani M., Estimation of Thermal Conductivity of CNTs-Water in Low Temperature by Artificial Neural Network and Correlation, Int. Commun. Heat Mass Transfer, 76: 376-381 (2015).

[14] Hemmat Esfe M., Afrand M., Yan W.-M., Akbari M., Applicability of Artificial Neural Network and Nonlinear Regression to Predict Thermal Conductivity Modeling of Al2O3–Water Nanofluids Using Experimental Data, Int. Commun. Heat Mass Transfer, 66: 246-249 (2015).

[15] Hemmat Esfe M., Afrand M., Wongwises S., Naderi A., Asadi A., Rostami S., Akbari M., Applications of Feedforward Multilayer Perceptron Artificial Neural Networks and Empirical Correlation for Prediction of Thermal Conductivity of Mg (OH) 2–EG Using Experimental Data, Int. Commun. Heat Mass Transfer, 67: 46-50 (2015).

[16] Hemmat Esfe M., Saedodin S., Sina N., Afrand M., Rostami S., Designing an Artificial Neural Network to Predict Thermal Conductivity and Dynamic Viscosity of Ferromagnetic Nanofluid, Int. Commun. Heat Mass Transfer, 68: 50-57(2015).

[17] Hemmat Esfe M., Ahangar M.R.H., Rejvani M., Toghraie D., Hajmohammad M.H., Designing
an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental
Data, Int. Commun. Heat Mass Transfer, 75:192-196(2016).

[18] Atashrouz S., Pazuki G., Alimoradi Y., Estimation of the Viscosity of Nine Nanofluids Using a Hybrid GMDH-Type Neural Network System, Fluid Phase Equilibria, 372: 43-48 (2014).

[19] Kulkarni D.P., Das D.K., Chukwu G.A., Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid), J. Nanosci. Nanotechnol., 6(4); 1150-1154 (2006).

[21] Kole M., Dey T., Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant, Exp. Thermal Fluid Sci., 34(6): 677-683 (2010).

[22] Chen H., Ding Y., Lapkin A., Fan X., Rheological Behaviour of Ethylene Glycol-Titanate Nanotube Nanofluids, J. Nanopart. Res., 11(6): 1513-1520 (2009).

[23] Cabaleiro D., Pastoriza-Gallego M.J., Gracia-Fernández C., Piñeiro M.M., Lugo L., Rheological and Volumetric Properties of TiO2-ethylene Glycol Nanofluids, Nanoscale Res. Lett., 8(1): 1-13 (2013).

[24] Pötschke P., Fornes T., Paul D., Rheological Behavior of Multiwalled Carbon Nanotube/ Polycarbonate Composites, Polymer,43(11): 3247-3255 (2002).

[26] Pastoriza-Gallego M.J., Lugo L., Legido J.L., Piñeiro M.M., Rheological Non-Newtonian Behaviour of Ethylene Glycol-Based Fe2O3 Nanofluids, Nanoscale Res. Lett., 6(1): 1-7 (2011).

[27] Abareshi M., Sajjadi S.H., Zebarjad S.M., Goharshadi E.K., Fabrication, Characterization, and Measurement of Viscosity of α-Fe2O3-glycerol Nanofluids, J. Mol. Liq., 163(1): 27-32 (2011).

[28] Tseng W.J., Lin K.-C., Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions, Mater. Sci. Eng., 355(1): 186-192 (2003).

[29] Katiyar A., Singh A., Shukla P., Nandi T., Rheological Behavior of Magnetic Nanofluids Containing Spherical Nanoparticles of Fe–Ni, Powder Technol., 224: 86-89 (2012).

[30] Chevalier J., Tillement O., Ayela F., Rheological Properties of Nanofluids Flowing Through Microchannels, Appl. Phys. Lett., 91(23): 23-31(2007).

[31] Chevalier J., Tillement O., Ayela F., Structure and Rheology of SiO2 Nanoparticle Suspensions under Very High Shear Rates, Phys. Rev. E, 80(5): 5-14 (2009).

[32] Duan F., Wong T.F., Crivoi A., Dynamic Viscosity Measurement in Non-Newtonian Graphite Nanofluids, Nanoscale Res. Lett., 7(1): 1-6 (2012).

[33] Phuoc T.X., Massoudi M., R Chen.-H., Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan, Int. J. Therm. Sci., 50(1): 12-18 (2011).