Photodegradation of Methylene Blue Solution via Au Doped TiO2 Nanocomposite Catalysts Prepared Using Novel Photolysis Method

Document Type: Research Article

Author

Department of Chemistry, Collage of Science, Diyala University, Baqubah, IRAQ

Abstract

Gold doped TiO2 has been successfully synthesized via the photolysis method and is characterized by different techniques. NPs of gold doped TiO2 were utilized for the degradation of methylene blue as a material pigmentation pollutant. The substitution of Au on TiO2 surface was established via XRD, EDX, TEM, and FT-IR techniques. The TEM and SEM results appeared that the particles in the nano range and its size below 15nm. Without a catalyst, the degradation of dye under visible light in acid and nature medium gives humble results but good results at pH 11 while it gives excellent results at all conditions when using catalyst.

Keywords

Main Subjects


[1] Diebold U., The Surface Science of Titanium Dioxide, Surf. Sci. Rep., 48(53): 53-229 (2003).

[3] Zaid H.M., Synthesis of Bismuth Oxide Nano Powders Viaelectrolysis Method and Study the Effect of Change Voltage on the Size for It, Australian Journal of Basic and Applied Sciences, 11(7): 97-101 (2017).

[4] San N., Hatipoglu A., Kocturk G., Cinar Z., Photocatalytic Degradation of 4-Nitrophenol in Aqueous TiO2 Suspensions: Theoretical Prediction of the Intermediates, J. Photochem. Photobiol. A: Chem., 146(3): 189-197 (2002).

[7] Ismail A.A., Bahnemann D.W., Mesostructured Pt/TiO2 Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid, J. Phys. Chem. C., 115(13): 5784-5791 (2011).

[8] Fateh R., Ismail A.A., Dillert R., Bahnemann D.W., Highly Active Crystalline Mesoporous TiO2 Films Coated onto Polycarbonate Substrates for Self-Cleaning Applications, J. Phys. Chem. C., 115(21): 10405-10411 (2011).

[9] Ismail A.A., Facile Synthesis of Mesoporous Ag-Loaded TiO2 Thin Film and Its Photocatalytic Properties, Microporous Mesoporous Mater, 149(1): 69–75 (2012).

[10] Bouras P., Stathatos E., Lianos P., Pure Versus Metal-Ion-Doped Nanocrystalline Titania for Photocatalysis, Appl. Catal. B: Environ., 73 (1-2): 51-59 (2007).

[11] Ismail A.A., Mesoporous PdO–TiO2 Nanocomposites with Enhanced Photocatalytic Activity, Appl. Catal. B: Environ., 117–118: 67–72 (2012).

[13] Ismail A.A., Robben L., Bahnemann D.W., Study of the Efficiency of UV and Visible-Light Photocatalytic Oxidation of Methanol on Mesoporous RuO2–TiO2 Nanocomposites, Chem. Phys. Chem., 12(5): 982–991 (2011).

[14] Kostedt W.L., Ismail A.A., Mazyck D.W., Impact of Heat Treatment and Composition of ZnO−TiO2 Nanoparticles for Photocatalytic Oxidation of an Azo Dye, Ind. Eng. Chem. Res., 47(5): 1483–1487 (2008).

[16] Yang Y., Li X., Chen J., Wang L., Flow Rate Distribution of the Unsteady Flow of Power Law Fluid in Eccentric Annuli with the Inner Cylinder Reciprocating Axially, J. Photochem. Photobiol. A: Chem., 163(6): 17-   (2004).

[17] Ismail A.A., Synthesis, Characterization of Y2O3/Fe2O3/TiO2 Nanoparticles by Sol Gel Method, Appl. Catal. B: Environ., 58: 117–123 (2005).

[18] Mahamoud M.H., Ismail A.A., Sanad M.S., Chem. Eng. J., 187: 96–103 (2012).

[19] Ismail A.A., Single-Step Synthesis of a Highly Active Photocatalyst for Oxidation of Trichloroethylene, Appl. Catal. B: Environ., 85(1-2): 33–39 (2008).

[20] Arpac E., Sayilkan F., Asilturk M., Tatar P., Kiraz N., Sayilkan, Photocatalytic Performance of Sn-Doped and Undoped TiO2 Nanostructured Thin Films Under UV and Vis-Lights, H. J. Hazard. Mater.,140(1-2): 69-74 (2011).

[21] Ismail A.A., Ibrahim I.A., Mohamed R.M., Sol–Gel Synthesis of Vanadia–Silica for Photocatalytic Degradation of Cyanide, Appl. Catal. B: Environ., 45(2): 161–166 (2003).

[22] Ismail A.A., Matsunaga H., Influence of Vanadia Content onto TiO2–SiO2 Matrix for Photocatalytic Oxidation of Trichloroethylene, Chem. Phys. Lett., 447(1-3): 74–78 (2007).

[23] Subramanian M., Vijayalakshmi S., Venkataraj S., Jayavel R., Effect of Cobalt Doping on the Structural and Optical Properties of TiO2 Films Prepared by Sol–Gel Process, Thin Solid Films, 516(12): 3776-3782 (2008).

[24] Han C., Pelaez M., Likodimos V., Kontosb A.G., Falarasb P., O’Shea K., Dionysiou D.D., Innovative Visible Light-Activated Sulfur Doped TiO2 Films for Water Treatment,Appl. Catal. B: Environ., 107(1-2): 77–87 (2011).

[25] Yang G., Yan Z., Xiao T., Low-Temperature Solvothermal Synthesis of Visible-Light-Responsive S-Doped TiO2 Nanocrystal, Appl. Surf. Sci., 258(8) 4016–4022 (2012).

[26] Lin L., Lin W., Xie J.L., Zhu Y.K., Zhao B.Y., Xie Y.C., Photocatalytic Properties of Phosphor-Doped Titania Nanoparticles, Appl. Catal. B: Environ., 75(1-2):
52-58 (2012).

[27] Nam S.-H., Kim T.K., Boo J.-H., Physical Property and Photo-Catalytic Activity of Sulfur Doped TiO2 Catalysts Responding to Visible Light, Catal. Today, 185(1): 259–262 (2008).

[28] Charanpahari A., Umare S.S., Gokhale S.P., Sudarsan V., Sreedhar B., Sasikala R., Enhanced Photocatalytic Aactivity of Multi-Doped TiO2 for the Degradation of Methyl Orange,Appl. Catal. A: Gen., 443–444: 96-102 (2012).

[29] Wang Y., Cheng H., Zhang L., Hao Y., Ma J., Xu B., Li W., Application of Ceramic Thermal Spray Coatings for Molten Metal Handling Tools and Moulds, J. Mol. Catal. A., 151(3): 205-209 (1999).

[30] Yu J.G., Zhao X.J., Yu J.C., Zhong G.R., The Grain Size and Surface Hydroxyl Content of Super-Hydrophilic TiO2/SiO2 Composite Nanometer Thin Films, J. Mater. Sci. Lett., 20(18):1745-1748 (2001).

[31] Rahulan K.M., Ganesan S., Aruna P., Synthesis and Optical Limiting Studies of Au-Doped TiO2 Nanoparticles, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2: 6-  (2011).

[32] Kohtani S., Koshiko M., Kudo A., Kunihiro Yasuhito I., Akira T., Kazuichi H., Ryoichi N., Photodegradation of 4-Alkylphenols Using BiVO4 Photocatalyst under Irradiation with Visible Light from a Solar Simulator, Appl. Catal. B, 46: 573–586 (2003).

[34] Contineanu M., Bercu C., Contineanu I., Neacsu A., An. Univ. Bucuresti.  Chimie., 18: 29–37 (2009).

[35] Misran M., Matheus D., Valente P., Hope A., Photochemical Electron Transfer Between Methylene Blue and Quinones, J. Chem., 47: 209–216 (1994).

[36] Severino D., Junquera H., Guglliotti M., Gabrielli D., Baptista M., J. Photochem. Photobiol., 77: 459–468 (2003).