Proton Conducting Nanocomposite Membranes Based on Poly Vinyl Alcohol (PVA) / Glutaraldehyde (GA) for Proton Exchange Membrane Fuel Cells

Document Type : Research Article

Authors

1 Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry, Naragh Branch, Islamic Azad University, Naragh, I.R. IRAN

3 Department of Chemistry, Amirkabir University of Technology, Tehran, I.R. IRAN

4 Fuel Cell and Solar Cell Laboratory, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, I.R. IRAN

Abstract

In the present work, BaCe0.85Yb0.15O3-δ mixed metal oxide nanoparticles supplying strong acid sites and good hydrophilic nature were used for the first time to build organic-inorganic proton exchange membranes. Poly(vinyl alcohol) - BaCe0.85Yb0.15O3-δ (PVAYb) nanocomposite membranes were fabricated. Different analyses such as Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) spectroscopy, Fourier Transform Infra-Red (FT-IR) spectroscopy, and ThermoGravimetry Analysis (TGA) were used to characterize and study the structural properties of the obtained membranes. SEM and EDX analyses exhibited a homogenous dispersion of the nanoparticles in the nanocomposite membrane.  It was found that PVAYb1.5 had a better elemental distribution compared to PVAYb2.5 composite membrane. PVAYb nanocomposite membrane containing 1.5 wt.% of BaCe0.85Yb0.15O3-δ nanoparticles displayed a high proton conductivity value (64 mS/cm) at 70 °C operation temperature. The peak power density of 29 mW/cm2 was obtained with a peak current density of 210 mA / cm2 for as-prepared Proton Exchange Membrane Fuel Cell (PEMFC) equipped with PPYb1.5 nanocomposite membrane at 70 °C.

Keywords

Main Subjects


[1] Mandanipour V., Noroozifar M., Modarresi-Alam A.R., Khorasani-Motlagh, M., Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel CellsIran. J. Chem. Chem. Eng. (IJCCE), 36(6): 151-162 (2017).
[3] Tian A.H., Kim J.-Y., Shi J.Y., Lee K., Kim K., Surface-modified Nafion Membrane by Trioctylphosphine-Stabilized Palladium Nanoparticles for DMFC Applications, J. Phys. Chem. Solids, 70(8): 1207-1212 (2009).
[4] Bae I., Oh K.H., Yuan S.H., Kim H., Asymmetric silica Composite Polymer Electrolyte Membrane for Water Management of Fuel Cells, J. Membr. Sci., 542: 52–59  (2017).
[5] Velayutham P., Sahu A.K., Parthasarathy S., A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells, Energies, 10(2): 259 (2017).
[8] Sahu A.K., Ketpang K., Shanmugam S., Kwon O., Lee S., Kim H., Sulfonated Graphene–Nafion Composite Membranes for Polymer Electrolyte Fuel Cells Operating Under Reduced Relative Humidity, J. Phys. Chem. C. 120(29): 15855–15866 (2016).
[9] Parthiban V., Akula S., Peera S.G., Islam N., Sahu A.K., Proton Conducting Nafion Sulfonated Graphene Hybrid Membranes for Direct Methanol Fuel Cells with Reduced Methanol Crossover, Energy Fuels, 30(1): 725–734 (2016).
[10] Sasikala S., Selvaganesh S.V., Sahu A.K., Carbone A.,  Passalacqua E., Block Copolymer Templated Mesoporous Carbon–Nafion Hybrid Membranes for Polymer Electrolyte Fuel Cells Under Reduced Relative Humidity, J. Membr. Sci., 499:503–514 (2016).
[11] Yin C., Wang Z., Luo Y., Li J., Zhou Y., Zhang X., Zhang H., Fang P., He C.,  Thermal Annealing on Free Volumes, Crystallinity and Proton Conductivity of Nafion Membranes, J. Phys. Chem. Solids, 120: 71-78 (      ).
[12] Hassan S., Yasin, T., Imran Z., Batool S.S., Silane Based Novel Crosslinked Chitosan/Poly(Vinyl Alcohol) Membrane: Structure, Characteristics and Adsorption Behaviour, J. Inorg. Organomet. Polym. Mater., 26(1): 208-218 (2016).
[13] Mabrouk T.M.M., Khozemy E.E., Ali A.E.H., Investigating the Electrical and Thermal Characteristics of Bismuth/(Polyvinyl alcohol/Acrylic Acid) Nanocomposites Membranes Prepared by Ionizing Radiation, J. Inorg. Organomet. Polym. Mater., 27(2): 399-455 (2017).
[16] Tsai C.E., Lin C.W., Rick J., Hwang B.J., Poly(Styrene Sulfonic Acid)/Poly(Vinyl Alcohol) Copolymers With Semi-Interpenetrating Networks as Highly Sulfonated Proton-Conducting Membranes, J. Power Sources, 196(13): 5470-       (2011).
[17] Kim D.S., Cho H.I.I., Kim D.H., Lee B.S., Yoon S.W., Kim Y.S., Moon G.Y., Byun H., Rhim J., Surface Fluorinated Poly(vinyl alcohol)/poly(styrene sulfonic acid-co-maleic acid) Membrane for Polymer Electrolyte Membrane Fuel Cells, J. Membr. Sci., 342: 138-144 (2009).
[18] Rhim J.W., Park H.B., Lee C.S., Jun J.H., Kim D.S., Lee Y.M., Crosslinked poly(vinyl alcohol) Membranes Containing Sulfonic Acid Group: Proton and Methanol Transport Through MembranesJ. Membr. Sci. 238: 143-151 (2004).
[19] Hooshyari K.H.,  Javanbakht M., Adibi M.,  Novel Composite Membranes Based on PBI and Dicationic Ionic Liquids for High Temperature Polymer Electrolyte Membrane Fuel Cells, Electrochim. Acta, 205:142-152 (2016).
[21] Shabanikia A., Javanbakht M., Amoli H.S., Hooshyari K.H., Enhessari M.,  Polybenzimidazole/ Strontium Cerate Nanocomposites with Enhanced Proton Conductivity for Proton Exchange Membrane Fuel Cells Operating at High Temperature, Electrochim. Acta, 154: 370-378 (2015).
[22] Hooshyari K.H., Javanbakh, M., Shabanikia A., Enhessari M., Fabrication BaZrO3/PBI-Based Nanocomposite as a New Proton Conducting Membrane for High Temperature Proton Exchange Membrane Fuel Cells, J. Power Sources, 276: 62-72 (2015).
[24] Shabanikia A., Javanbakht M., Amoli H.S., Hooshyari K., Enhessari M., Novel Nanocomposite Membranes Based on Polybenzimidazole and Fe2TiO5 Nanoparticles for Proton Exchange Membrane Fuel Cells, Ionics, 21(8): 2227-2236 (2015).
[25] Attaran A.M., Javanbakht M., Hooshyari K., Enhessari M., New Proton Conducting Nanocomposite Membranes Based on Poly Vinyl Alcohol/Poly Vinyl Pyrrolidone/BaZrO3 for Proton Exchange Membrane Fuel Cells, Solid State Ion., 269: 98-105 (2015).
[26] Wu Y., Wu C., Li Y., Fu Y., PVA–silica Anion-Exchange Hybrid Membranes Prepared Through a Copolymer Crosslinking Agent, J. Membr. Sci, 350:322-332 (2010).
[27] Caetano E., de Souza C., Muccillo R., Properties and Applications of Perovskite Proton Conductors.J. Mat. res., 13(3): 385-394 (2010).
[29] Ciontea L., Ristoiu T., Suciu R., Petrisor T., Neamtu B., Rufoloni A., Celentano G., Petrisor T., Chemical Processing and Characterization of Barium Zirconate Nanopowders, J. Optolectron. Adv. Mater., 9(3): 776-779 (2007).
[30] Raiteri P., Gale J., Bussi G., Reactive Force Field Simulation of Proton Diffusion in BaZrO3 Using an Empirical Valence Bond Approach, J. Phys: Condens. Matter, 23: 334213 (2011).
[31] Stokes S., Saiful Islam M., Defect Chemistry and Proton-Dopant Association in BaZrO3 and BaPrO3J. Mater. Chem., 20: 6258-6264 (2010).
[32] Onishi T., Helgaker T., “A Theoretical Study on Proton Conduction Mechanism in BaZrO3 Perovskite”, Chapter 14, Springer International Publishing Switzerland (2013). 
[33] Zajac W., Rusinek D., Zheng K., Molenda J., Applicability of Gd-Doped BaZrO3, SrZrO3, BaCeO3, and SrCeO3 Proton Conducting Perovskites as Electrolytes for Solid Oxide Fuel Cells, Cent. Eur. J. Chem., 11(4): 471-484 (2013).
[34] Cherry M., Islam M.S., Gale J.D., Catlow C.R.A., Computational Studies of Protons in Perovskite-Structured Oxides, J. Phys. Chem. 99(40): 14614-14618 (1995).
[36] Yang J., Deng L., Han C., Duan J., Ma M., Zhang X., Xu F., Sun R., Synthetic and Viscoelastic Behaviors of Silicananoparticle Reinforced Poly(acrylamide) Core-Shell Nanocomposite Hydrogels, Soft Matter., 9(4): 1220-1230 (2013).
[37] Kumar S.K., Jouault N., Benicewicz B., Neely T., Nanocomposites with Polymer Grafted Nanoparticles, Macromol., 46(9): 3199-3214 (2013).
[38] Li Y., Krentz T.M., Wang L., Benicewicz B.C., Schadler L.S., Ligand Engineering of Polymer Nanocomposites: from the Simple to the Complex, ACS App. Mater. Interfaces, 6(9):6005-6021 (2014).
[40] Tokuda H., Hayamizu K., Ishii K., Susan M.A.B.H., Watanabe M., Physicochemical Properties and Structures of Room Temperature Ionic Liquids.
2. Variation of Alkyl Chain Length in Imidazolium Cation
, J. Phys. Chem. B, 109(13): 6103-6110 (      ).
[41] Kim D.S., Guiver M.D., Nam S., Yun T.I., Seo M., Kim S.J., Hwang H.S., Rhim J.W.,  Preparation of Ion Exchange Membranes for Fuel Cell Based on Crosslinked Poly(vinyl alcohol) with Poly(styrene Sulfonic Acid-Co-Maleic Acid), J. Membr. Sci., 281:156-162 (2006).
[42] Tsai C.E., Lin C.W., Rick J., Hwang B.J.,  Poly(styrene sulfonic acid)/poly(vinyl alcohol) Copolymers With Semi-Interpenetrating Networks as Highly Sulfonated Proton-Conducting MembranesJ. Power Sources, 196(13):5470-5477 (2011).
[43] Attaran A.M., Javanbakht M., Hooshyari K., Enhessari M., New Proton Conducting Nanocomposite Membranes Based on Poly Vinyl Alcohol/Poly Vinyl Pyrrolidone/BaZrO3 for Proton Exchange Membrane Fuel Cells, Solid State Ionics, 269: 98-105 (2015).
[44] Hooshyari K., Javanbakht M., Enhessari M., Beydaghi H., Novel PVA/La2Ce2O7 hybrid nanocomposite Membranes for Application in Proton Exchange Membrane Fuel Cells, Iran. J. Hydrogen & Fuel Cell.,  1(2): 105-112 (2014).
[47] Boroglu M.S., Cavus S., Boz I., AtaA., Synthesis and Characterization Of Poly(Vinyl Alcohol) Proton Exchange Membranes Modified with 4,4-Diaminodiphenylether-2,2-Disulfonic AcidEXPRESS Polymer Letters, 5(5): 470-478 (2011).
[48] Bahador A.R., Molaei M., Karimipour M., One-pot room temperature synthesizing Cu- and Mn-doped ZnSe nanocrystals by a rapid photochemical method, Mod. Phys. Lett. B, 30(11):1650227- 1650227 (2016).