Facile and Benign Method to Produce Large Scale Graphene Nano Sheets

Document Type : Research Note

Authors

Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, INDONESIA

10.30492/ijcce.2019.36707

Abstract

The large scale production of Graphene Nano Sheets (GNS) has fascinated many researchers. GNS was produced base on a sustainable raw material namely coconut fruit. Coconut fruit was converted directly to be GNS with ethanol assisted. Then, it was characterized by XRD and TEM. Interestingly, XRD data show the C(002) peak is broad and weak appear, indicating GNS was formed. This data is also consistent with TEM data. Therefore, the formation of GNS may definitely be affected by the immersing process of coconut fruit by ethanol. Base on this research, the large scale GNS may be produced with the facile and benign method.

Keywords

Main Subjects


[1] Samad S., Loh K.S., Wong W.Y., Lee, T.K., Sunarso J., Chong S.T., Wan Daud W.R., Carbon and Non-Carbon Support Materials for Platinum-Based Catalysts in Fuel CellsInternational Journal of Hydrogen Energy.,43(16):7823-7854(2018).
[2] Li Y.Y., Li C.T., Yeh M.H., Huang K.C., Chen P.W., Vittal R., Ho K.C., Graphite with Different Structures as Catalysts for Counter Electrodes in Dye-Sensitized Solar Cells, Electrochim Acta.,179: 211-219(2015).
[4] Choi H.J., Jung S.M., Seo J.M., Chang D.W., Dai L., Baek J.B., Graphene for Energy Conversion and Storage in Fuel Cells and Supercapacitors, Nano Energy.,1:534-551 (2012).
[5] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science., 306:666-669 (2004).
[6] Taghioskoui M., Trends in Graphene Research, Materials Today.,12(10):34-37 (2009).
[7] Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., The Electronic Properties Of Graphene, Rev. Mod. Phys., 81(1): 109-162 (2009).
[8] Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S., Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon.,45(7):1558-1565 (2009).
[9] Choucair M., Thordarson P. and Stride J.A., Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication, Nature Nanotech., 4: 30-33 (2009).
[10] Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z.Y., De S., McGovern I.T., Holland B., Byrne M., Gun’ko Y.K., Boland J.J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A.C., Coleman J.N., High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, Nature Nanotech., 3(9): 563-568 (2008).
[11] Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., Ahn J.H., Kim P., Choi J.Y., Hong B.H., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature.,457(7230): 706-710 (2009).
[12] Murugan A.V., Muraliganth T., Manthiram A., Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Storage, Chem. Mater., 21(21): 5004-5006 (2009).
[13] Emtsev K.V., Bostwick A., Horn K., Jobst J., Kellogg G.L., Ley L., McChesney J.L., Ohta T., Reshanov S.A., Röhrl J., Rotenberg E., Schmid A.K., Waldmann D., Weber H.B., Seyller T., Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide, Nature Mater., 8(3):203-207 (2009).
[14] Sutter P.W., Flege J.I., Sutter E.A., Epitaxial Graphene on Ruthenium, Nature Mater., 7(5): 406-411 (2009).
[15] Brownson D.A., D.K. Kampouris C. E. Banks., Graphene Electrochemistry: Fundamental Concepts Through to Prominent Applications, Chem. Soc. Rev. 41(21):6944-6976 (2012).
[16] Chen S., Cai W., Piner R.D., Suk J.W., Wu Y., Ren Y., Kang J., Ruoff R.S., Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy FoilsNano Lett.,11(9): 3519-3525 (2011).
[17] Huang P.Y., Ruiz-Vargas C.S., Van der Zande A.M., Whitney W.S., Levendorf M.P., Kevek J.W., Garg S., Alden J.S., Hustedt C.J., Zhu Y., Park J., McEuen P.L., Muller D.A., Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts, Nature.,469(7330): 389-392 (2011).
[18] Walter A.L., Nie S., Bostwick A., Kim K.S., Moreschini L., Chang Y.J., Innocenti D., Horn K., McCarty K.F., Rotenberg E., Electronic Structure of Graphene on Single-Crystal Copper Substrates, Phys Rev B.,84:195443 (2011).
[19] Dimitrakopoulos C., Wisnieff R., Grill A., Antoniadis D.A., McArdle T.J., Liu Z., Effect of SiC Wafer Miscut Angle on the Morphology and Hall Mobility of Epitaxially Grown Graphene, Appl. Phys. Lett., 98: 222105 (2011).
[20] McDonald A.H., Bistritzer R., Graphene Moiré Mystery Solved?, Nature.,474: 453-454 (2011).
[21] Supeno M., Siburian R., New Route: Convertion of Coconut Shell Tobe Graphite and Graphene Nano Sheets, Journal of King Saud University-Science.