Removal of Nitrate from Water Using TiO2/ PVDF Membrane Photobioreactor

Document Type : Research Article


1 Chemical Injuries Research Center, Systems Biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, I.R. IRAN

2 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 1435915371 Tehran, I.R. IRAN

3 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqyatallah University of Medical Sciences, Tehran, I.R. IRAN


Removing low-concentration nitrate from water is desirable because it may cause eutrophication when discharged, but it is challenging using current technologies. Membrane photobioreactor (MPBR) technology (which is the combination of membrane and microalgae cultivation) emerges as a suitable option to efficiently reduce the nutrient load from wastewater. This study developed a high-efficiency microalgal-bacterial Membrane PhotoBioReactor (MPBR) to biologically remove nitrate from water. In order to obtain low-fouling membranes, TiO2 nanoparticles were entrapped in PVDF membranes prepared by the phase inversion method. Successful fabrication of composite membranes (PVDF/TNT) was confirmed by using XRD, FTIR,  DSC,  TGA,  SEM, and AFM. Membrane properties were studied using contact angle, tensile strength, pure water flux, Bovine Serum Albumin (BSA) rejection, antifouling properties, and porosity. Compared with the pristine PVDF films, the hydrophilicity, permeability, and antifouling performance of the proposed membrane were improved. A laboratory-scale MBR equipped with a synthesized membrane was used to evaluate the performance of mixotrophic denitrification under different Carbon Nitrogen (C/N) ratios, Hydraulic Retention Times (HRT), Nitrate loading, and Influent alkalinity. Methanol was supplied as a carbon source. Almost complete denitrification was achieved when the bioreactor was fed with 75 mg/L NO3–N, 150 mg/L methanol at 4 h HRT without external alkalinity supplementation. The results as a whole indicated that the MPBR can be applied effectively to the removal of nitrate from real wastewater.


Main Subjects

[1]  Yu X., Jiang Y., Huang H., ShiaKeji J., Zhang W.P., Lv J., Li H., He H., Li X., Simultaneous Aerobic Denitrification and Cr(VI) Reduction by Pseudomonas Brassicacearum LZ-4 In Wastewater, Bioresource Technology221: 121-129 (2016).
[2] Satake S., Tang C., Groundwater Nitrate Remediation Using Plant-Chip Bioreactors under Phosphorus-Limited Environment,  Journal of Contaminant Hydrology209: p. 42-50 (2018).
[3] Darvish M., Moradi Dehaghi S., Taghavi L., Karbassi A.R., Removal of Nitrate Using Synthetic Nano Composite ZnO/Organoclay: Kinetic and Isotherm Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 105-118 (2020).
[4] Prajapat G., Rellegadla S., AkhilAgrawal S., Reservoir Souring Control Using Benzalkonium Chloride and Nitrate in Bioreactors Simulating Oil Fields of Western Indi, International Biodeterioration & Biodegradation132: p. 30-39 (2018).
[7] Izadi A., Hosseini M., Pajoum Shariati F., Najafpour G., Nabi Bidhendi G., Treatment of Real Paper-Recycling Wastewater in a Novel Hybrid Airlift Membrane Bioreactor (HAMBR) For Simultaneous Removal of Organic Matter And Nutrients, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 209-220 (2019).
[9] Nwob E.G., Parlevliet D.A., Laird D.W., Alameh K., Moheimani N.R., Sustainable Phycocyanin Production from Arthrospira Platensis Using Solar-Control Thin Film Coated Photobioreactor, Biochemical Engineering Journal,  141: 232-238 (2019).
11. Alsalhy Q.F., Al-Ani F.H., Al-Najar A.E., A New Sponge-GAC-Sponge Membrane Module for Submerged Membrane Bioreactor Use in Hospital Wastewater Treatment, Biochemical Engineering Journal, 133: 130-139 (2018).
[12] Sayadi M., Farasati M., Mahmoodloo M., Rostami F., Removal of Nitrate, Ammonium and Phosphate from Water Using Conocarpus and Paulownia Plant Biochar, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 205-222 (2020).
[14] Naghizadeh A., Mahvi A.H., Mesdaghinia A.R., Alimohammadi M., Application of MBR Technology in Municipal Wastewater Treatment, Arab. J. Sci. Eng.36(1): 3–10 (2011).
[15] Naghizadeh A., Daraei H.N., Naddafi K., Evaluation of Hollow Fiber Membrane Bioreactor Efficiency for Municipal Wastewater Treatment, Iran. J. Environ. Health Sci. Eng.5(4): 257-268 (2008).
[16] Derakhshan Z., Mahvi A.H., Ehrampoush M.H., Ghaneian M.T., Yousefinejad S., Faramarzian M., Mazloomi S.M., Dehghani M., Fallahzadeh H., Evaluation of Kenaf Fibers as Moving Bed Biofilm Carriers in Algal Membrane Photobioreactor, Ecotoxicology and Environmental Safety152: 1-7 (2018).
[17] Foladori P., Petrini S., Andreottola G., Evolution of Real Municipal Wastewater Treatment in Photobioreactors and Microalgae-Bacteria Consortia Using Real-Time Parameters, Chem. Eng. J.345: 507-516 (2018).
[18] Zhang X., Wang Y., Liu Y., Xu J., Han Y., Xu X., Preparation, Performances of PVDF/ZnO Hybrid Membranes and their Applications in the Removal of Copper Ions, Appl. Surf. Sci., 316: 333-340 (2014).
[19] Laera G., Chong M.N., Jin B., Lopez A., An integrated MBR-TiO2 Photocatalysis Process for the Removal of Carbamazepine from Simulated Pharmaceutical Industrial Effluent, Bioresource Technology102(13): 7012-7015 (2011).
[20] Qin L., Zhang Y., Xu Z., Zhang G., Advanced Membrane Bioreactors Systems: New Materials and Hybrid Process Design, Bioresource Technology,  269: 476-488 (2018).
[21] Naghizadeh A., Shahabi H., F.Ghasemi, Zarei A., Synthesis of Walnut Shell Modified with Titanium Dioxide and Zinc Oxide Nanoparticles for Efficient Removal of Humic Acid from Aqueous Solutions., J. Water. Health. ,  14(6): p. 989-997 (2016 ).
[22] Guldhe A., Kumari S., Ramanna L., Ramsundar P., Singh P., Rawat I., Bux F., Prospects, Recent Advancements and Challenges of Different Wastewater Streams for Microalgal Cultivation, Journal of Environmental Management203: 299-315 (2017).
[23] Ramandi S.,  Entezari M.H., Ghows N., Solar Photocatalytic Degradation of Diclofenac by N-Doped TiO2 Nanoparticles Synthesized by Ultrasound, Iran. J. Chem. Chem. Eng. (IJCCE), 39(3): 50-173 (2020).
[24] Huang H., Hou X., Xiao J., Zhao L., Li Y., Effect of Annealing Atmosphere on the Performance of TiO2 Nanorod Arrays in Photoelectrochemical Water Splitting, Catalysis Today330: 189-194 (2019).
[25] Zatloukalová K., Obalová L., Koči K., Čapek L., Matěj Z., Šnajdhaufová H., Ryczkowski J., Słowik G., Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized TiO2 Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE),  36(2): 29-38 (2017).
[26] Bahramian A.R., Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 Nanostructured Thin Film, Iran. J. Chem. Chem. Eng. (IJCCE),  35(2): 27-41 (2016).
[27] Zhang J., Wang Z., Liu M., Zhao F., Wu Z., In-Situ Modification of PVDF Membrane During Phase-Inversion Process Using Carbon Nanosphere Sol as Coagulation Bath for Enhancing Anti-Fouling Ability, Journal of Membrane Science,  526: 272-280 (2017).
[29] Zhao C., Xu X., Chen J., Wang G., Yang F., Highly Effective Antifouling Performance of PVDF/Graphene Oxide Composite Membrane in Membrane Bioreactor (MBR) System, Desalination340(1): 59-66 (2014).
[30] Song H., Shao J., He Y., Liu B., Zhong X., Natural Organic Matter Removal and Flux Decline with PEG-TiO2-doped PVDF Membranes By Integration of Ultrafiltration with Photocatalysis, Journal of Membrane Science405-406: 48-56 (2012).
[31] Li J.H., Shao X.S., Zhou Q., Li M.Z., Zhang Q.Q., The Double Effects of Silver Nanoparticles on the PVDF Membrane: Surface Hydrophilicity and Antifouling Performance, Appl Surf Sci265: 663-670 (2013).
[32] Yu H., Qu F., Zhang X., Wang P., Li G., Liang H., Effect of Quorum Quenching on Biofouling and Ammonia Removal in Membrane Bioreactor under Stressful Conditions, Chemosphere199: 114-121 (2018).
[33] Lee D.U., Lee I.S., Choi Y.D., Bae J.H., Effects of External Carbon Source and Empty Bed Contact Time on Simultaneous Heterotrophic and Sulfur-Utilizing Autotrophic Denitrification, Process Biochemistry,  36(12): 1215-1224 (2001).
[34] Sahinkaya E., Dursun N., Kilic A., Demirel S., Uyanik S., Cinar O., Simultaneous Heterotrophic and Sulfur-Oxidizing Autotrophic Denitrification Process for Drinking Water Treatment: Control of Sulfate Production, Water Research, 45(20): 6661-6667 (2011).
[35] Soares M.I.M., Denitrification of Groundwater with Elemental Sulfur, Water Research36(5): 1392-1395 (2002).
[36] Sierra-Alvarez R., Karri S., Freeman S., Field J.A., Biological Treatment of Heavy Metals in Acid Mine Drainage Using Sulfate Reducing Bioreactors, Water Sci. Technol., 54(2): 179-185 (2006).
[37] Foglar L., Briški F., Sipos L., Vuković M., High Nitrate Removal from Synthetic Wastewater with the Mixed Bacterial Culture, Bioresource Technology96(8): 879-888 (2005).
 [38] Kesserü P., Kiss I., Bihari Z., Polyák B., Biological Denitrification in a Continuous-Flow Pilot
Bioreactor Containing Immobilized Pseudomonas Butanovora Cells
, Bioresource Technology, 87(1): 75-80 (2003).
[39] Montalvo S., Guerrero L., Robles M., Mery C., Huiliñir C., Borja R., Start-up and Performance of UASB Reactors Using Zeolite for Improvement of Nitrate Removal Process, Ecological Engineering70: 437-445 (2014).
[40] Isaka K., Kimura Y., Osaka T., Tsuneda S., High-Rate Denitrification Using Polyethylene Glycol Gel Carriers Entrapping Heterotrophic Denitrifying Bacteria, Water Research, 46(16): 4941-4948 (2012).
[41] Jing C., Ping Z., Mahmood Q., Simultaneous Sulfide and Nitrate Removal in Anaerobic Reactor under Shock Loading, Bioresource Technology,  100(12): 3010-3014 (2009).
[42] Darvish M.,  Moradi Dehaghi S.,  Taghavi L., Karbassi A.R., Removal of Nitrate Using Synthetic Nano Composite ZnO/Organoclay: Kinetic and Isotherm Studies, Iran. J. Chem. Chem. Eng. (IJCCE)39(1): 105-118 (2020).
[43] Barber W.P., Stuckey D.C., Nitrogen Removal in a Modified Anaerobic Baffled Reactor (ABR): 1, Denitrification, Water Research, 34(9): 2413-2422 (2000).
[44] Cai C., Hu S., Guo J., Shi Y., Xie G.J., Yuan Z., Nitrate Reduction by Denitrifying Anaerobic Methane Oxidizing Microorganisms Can Reach a Practically Useful Rate, Water Research87: 211-217 (2015).
[45] Waki M., Suzuki K., Osada T., Tanaka Y., Methane-Dependent Denitrification by a Semi-Partitioned Reactor Supplied Separately with Methane and Oxygen, Bioresource Technology, 96(8): 921-927 (2005).
[46] Islas-Lima S., Thalasso F., Gómez-Hernandez J., Evidence of Anoxic Methane Oxidation Coupled to Denitrification, Water Research, 38(1): 13-16 (2004).