Dry Reforming of Methane Using Cold Plasma; Kinetic Model Study

Document Type: Research Article


1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Plasma Research Laboratory, Research Institute of Petroleum Industry (RIPI), P.O.Box: 14665-1998, Tehran, I.R. IRAN

3 Gas Division, Research Institute of Petroleum Industry (RIPI), P.O.Box: 14665-1998, Tehran, I.R. IRAN


In this work, the dry reforming of methane was studied using a corona and gliding discharge plasma microreactors. A chemical kinetic model was developed to describe the experimental behavior observed. The kinetic model is proposed based on the assumption that the reactant molecules CH4 or CO2 are attacked by active species produced by the plasma discharges, and the production of this active species are a function of the plasma power. The modelization allowed the prediction of
the conversion of the reactants
(CH4 and CO2) according to the energy transfer to the gas ().
The value is characteristic of the energy cost; the lower β value indicated better efficiency. The value of CH4 was found to be 10.42 and 58.25 J and for CO2 equal to 12.24 and 27.77 J for corona and gliding discharge plasma, respectively. The kinetic model also demonstrated that the methane and carbon dioxide conversion was an exponential function of the plasma energy, and were a linear function of the input energy for a CH4 and CO2 inlet concentration. Our Model also implied that a plasma reactor with a smaller input discharge power has better energy efficiency for CO2 andCH4 conversion.


Main Subjects

[1] Bradford M.C.J., Vannice M.A., CO2 Reforming of CH4Catal. Rev. Sci. Eng, 41: 1-42 (1999).

[2] Choudary T.V., Aksoylu E., Wayne Goodman D., Nonoxidative Activation of Methane, Catal. Rev, 45(1): 151-203 (2003).

[3] Huang A., Xia G., Wang J., Suib S.L., Hayashi Y., Matsumoto H., CO2 Reforming of CH4 by Atmospheric Pressure ac Discharge Plasmas, J. Catal, 189: 349-359 (2000).

[4] Aghamir F.M., Jalili A.H., Esfarayeni M.H., Khodagholi M.A., Conversion of Methane to Methanol in an ac Dielectric Barrier Discharge, Plasma Sources Sci T, 13: 707-714 (2004).

[5] Rueangjitt N., Sreethawong T., Chavadej S., Sekiguchic H., Plasma-Catalytic Reforming of Methane in AC Microsized Gliding Arc Discharge: Effects of Input Power, Reactor Thickness, and Catalyst Existence, Chem. Eng. J, (Amsterdam, Neth.) 155:874-880 (2009).

[6] Gallon H.J., Tu X., Whitehead J.C., Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge, Plasma Process Polym, 9, 90-97 (2012).

[7] Li X.S., Lin C.K., Shi C., Xu Y., Wang Y.N., Zhu A.M., Stable Kilohertz Spark Discharges for High-Efficiency Conversion of Methane to Hydrogen and Acetylene, J. Phys. D. Appl. Phys, 41: 175203175210 (2008).

[8] Gallon H.J., Tu X., Twigg M.V., Whitehead J.C., Plasma-Aassisted Methane Reduction of a NiO Catalyst—Low Temperature Activation of Methane and Formation of Carbon Nanofibres, Appl Catal B, 106: 616-620 (2011).

[9] Savinov S.Y., Lee H., Song H.K., Na B.K., Decomposition of Methane and Carbon Dioxide in a Radio-Frequency Discharge, Ind. Eng. Chem. Res, 38(7): 2540-2547 (1999).

[10] Marafee A., Liu C., Xu G., Mallinson R., Lobban L., An Experimental Study on the Oxidative Coupling of Methane in a Direct Current Corona Discharge Reactor over Sr/La2O3 Catalyst, Ind. Eng. Chem. Res, 36: 632-637 (1997).

[11] Liu C., Marafee A., Allinson R., Lobban L., Methane Conversion to Higher Hydrocarbons in a Corona Discharge over Metal Oxide Catalysts with OH Groups, Appl Catal A: Gen, 164: 21-33 (1997).

[12] Aziznia A., Bozorgzadeh H.R., Seyed-Matin N., Baghalha M., Mohamadalizadeh A., Comparison of Dry Reforming of Methane in Low Temperature Hybrid Plasma-Catalytic Corona with Thermal Catalytic Reactor over Ni/γ-Al2O3, J Nat Gas Chem, 21: 466-475 (2012).

[13] Goujard V., Tatibouet J.M., Batiot-Dupeyrat C., Carbon Dioxide Reforming of Methane Using a Dielectric Barrier Discharge Reactor: Effect of Helium Dilution and Kinetic Model, Plasma Chem Plasma P, 31(2): 315-325 (2011).

[14] Indarto A., Choi J-W., Lee H., Song H.K., Effect of Additive Gases on Methane Conversion using Gliding Arc Discharge, Energy, 31(14): 2986-2995 (2006).

[16] Yang Y., Methane Conversion and Reforming by Nonthermal Plasma on Pins, Ind. Eng. Chem. Res, 41(24): 5918-5926 (2002).

[17] Jiang T., Li M., Li Y., Xu G., Liu C., Eliasson B., Comparative Investigation on the Conversion of Greenhouse Gas Using Dielectric Barrier Discharge and Corona Discharge, Journal of Tianjin University, 35(1): 19-22 (2002).

[18] Ghorbanzadeh A., Lotfalipour R., Rezaei S., Carbon Dioxide Reforming of Methane at Near Room Temperature in Low Energy Pulsed Plasma, Int J Hydrogen Energy, 34(1): 293-298 (2009).

[19] Yan K., van Heesch E.J.M., Pemen A.J.M., Huijbrechts P.A.H.J., From Chemical Kinetics to Streamer Corona Reactor and Voltage Pulse Generator, Plasma Chem Plasma P, 21(1): 107-137 (2001).

[20] Rudolph R., Francke K.P., Miessner H., Concentration Dependence of VOC Decomposition by Dielectric Barrier Discharges, Plasma Chem Plasma P, 22(3):401-412 (2002).

[21] Redolfi M., PhD. Thesis of the University Paris XIII (2007).

[22] Li M.W., Xu G.H., Tian Y.L., Chen L., Fu H.F., Carbon Dioxide Reforming of Methane Using DC Corona Discharge Plasma Reaction, J. Phys. Chem. A, 108: 1687-1693 (2004).

[23] Reddy E.L., Karuppiah J., Renken A., Kiwi-Minsker L., Subrahmanyam C., Kinetics of the Decomposition of Hydrogen Sulfide in a Dielectric Barrier Discharge Reactor, Chem. Eng. Technol, 35: 2030-2034 (2012).

[24] Chiper A.S., Blin-Simiand N., Heninger M., Mestdagh H., Boissel P., Jorand F., Lemaire J., Leprovost J., Pasquiers S., Popa G., Postel C., Detailed Characterization of 2-Heptanone Conversion by Dielectric Barrier Discharge in N2 and N2/O2 Mixtures, J. Phys. Chem. A, 114: 397-407 (2010).

[25] Rosacha L.A., Korzekwa R.A., Advanced Oxidation and Reduction Processes in the Gas Phase Using Non-Thermal Plasmas, J. Adv. Oxid. Technol, 4: 247-264 (1999).