Production and Solubility of Ectoine: Biochemical and Molecular Dynamics Simulation Studies

Document Type : Research Article


1 Department of Chemical Engineering, Faculty of Engineering, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Environment, Faculty of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

3 Department of Chemical Science, Faculty of Science & Technology, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

4 Department of Life Science Engineering, Faculty of New Science & Technology, University of Tehran, Tehran, I.R. IRAN

5 Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, P.O.Box:11155-4563, Tehran, I.R. IRAN

6 Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, I.R. IRAN

7 Department of Chemical Science, Faculty of Science & Technology, Islamic Azad University North Tehran Branch, Tehran, I.R. IRAN


In this study, ectoine is produced by Streptomyces. sp IBRC-M PTCC 10615. Fermentation parameters such as flow regime, gas hold up, mass transfer coefficient, and mixing time were optimized by statistical analysis. Streptomyces. sp produced a maximal ectoine concentration of 270 mmol/kg at optimal conditions of ectoine and L-aspartic acid. Also, the amount of mass transfer, gas hold up, and mixing time were determined 0,41/s ,0.3, and 40 s, respectively. The amount of ectoine was measured by HPLC. Furthermore, Molecular Dynamics (MD) simulation was used for studying the solubility of ectoine in aqueous media. Equilibrium data such as temperature, potential energy, and volume graphs showed that the solubility of ectoine is 25%more than glycerol. Also, all the achieving graphs from the equilibrium of simulation were confirmed the appropriate structure of the system.


Main Subjects

[1] Chen R., Zhu L., Lv L., Yao S., Li B., Qian J., Optimization of the Extraction and Purification of The Compatible Solute Ectoine From Halomonas Elongate in the Laboratory Experiment of a Commercial Production Project, World J. Microbiol. Biotechnol.33: 116-    (2017).
[2] Chen W.-C., Hsu C.-C., Lan J.C.-W., Chang Y.-K., Wang L.-F., Wei Y.-H., Production and Characterization of Ectoine Using a Moderately Halophilic Strain Halomonas Salina BCRC17875, J. Biosci. Bioeng.,    :     -      (2018).
[3] Tavakoli Z., Yazdian F., Tabandeh F., Sheikhpour M., Regenerative Medicine as a Novel Strategy for AMD Treatment: A Review, Biomed. Phys. Eng. Express,   :   -   (2019).
[4] Tavakoli Z., Rasekh B., Yazdian F., Maghsoudi A., Soleimani M., Mohammadnejad J., One-Step Separation of the Recombinant Protein by Using the Amine-Functionalized Magnetic Mesoporous Silica Nanoparticles; An Efficient and Facile Approach, Int. J. Biol. Macromol., 135:  600–608 (2019).
[5] Sadeghi A., Soltani B.M., Jouzani G.S., Karimi E., Nekouei M.K., Sadeghizadeh M., Taxonomic Study of a Salt Tolerant Streptomyces Sp. Strain C-2012 and the Effect of Salt and Ectoine on Lon Expression Level, Microbiol. Res., 169: 232–238 (2014).
[6] Ghaemi A., Abdi K., Javadi S., Shehneh M.Z., Yazdian F., Omid, M., Rashedi H., Haghiralsadat B.F., Asayeshnaein, O., Novel Microfluidic Graphene Oxide–Protein Amperometric Biosensor for Detecting Sulfur Compounds, Biotechnol. Appl. Biochem., (2019).
[7] Malekimusavi H., Ghaemi A., Masoudi G., Chogan F., Rashedi H., Yazdian F., Omidi M., Javadi S., Haghiralsadat B.F., Teimouri M., Graphene Oxide‐L‐Arginine Nano‐Gel: A Ph‐Sensitive Fluorouracil Nanocarrier, Biotechnol. Appl. Biochem.,      :     -      (2019).
[8] Bavandi R., Emtyazjoo M., Saravi H.N., Yazdian F., Sheikhpour M., Study of Capability of Nanostructured Zero-Valent Iron and Graphene Oxide for Bioremoval of Trinitrophenol from Wastewater in a Bubble Column Bioreactor, Electron. J. Biotechnol., 39: 8–14 (2019).
[9] Amoabediny G., Rezvani M., Rashedi H., Jokari S., Chamanrokh P., Mazaheri M., Ghavami M., Yazdian F., Application of a Novel Method for Optimization of Bioemulsan Production in a Miniaturized Bioreactor, Bioresour. Technol., 101: 9758–9764 (2010).
[10] Khosravi Darani K., Yazdian F., Rashedi H., Madadian Bozorg N., Moradi M., Rezazadeh Mofradnia S., Koller M., Simulation of Bioreactors for PHB Production from Natural Gas, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 313-330 (2018).
[11] Ashouri R., Ghasemipoor P., Rasekh B., Yazdian F., Mofradnia S.R.M., Ghasemipoor R.A.P., Yazdian B.R.F., Mofradnia S.R.M., The Effect of ZnO-Based Carbonaceous Materials for Degradation of Benzoic Pollutants: A Review, Int. J. Environ. Sci. Technol.,   : 1–12 (2018).
[12] Razmimanesh F., Amjad-Iranagh S., Modarress H., Molecular Dynamics Simulation Study of Chitosan And Gemcitabine as a Drug Delivery System, J. Mol. Model., 21:      -      (2015).
[13] Subashini M., Devarajan P.V., Sonavane G.S., Doble M., Molecular Dynamics Simulation of Drug Uptake by Polymer, J. Mol. Model., 17: 1141–1147 (2011).
[14] Sahebnazar Z., Mowla D., Karimi G., Yazdian F., Zero-Valent Iron Nanoparticles Assisted Purification of Rhamnolipid for Oil Recovery Improvement from Oily Sludge. J. Environ. Chem. Eng., 6: 917–922 (2017).
[15] Rungnim C., Rungrotmongkol T., Hannongbua S., Okumura, H., Replica Exchange Molecular Dynamics Simulation of Chitosan for Drug Delivery System Based on Carbon Nanotube, J. Mol. Graph. Model., 39: 183–192 (2013).
[16] Alamdar N., Rasekh B., Yazdian F., Effects of Fe/SDS and Au Nanoparticles on Pseudomonas Aeroginosa Bacterial Growth and Biosurfactant Production, IET Nanobiotechnology,     : 26–28 (2018).
[17] Rajab Beigy M., Rasekh B., Yazdian F., Aminzadeh B., Shekarriz M., High Nitrate Removal by Starch‐Stabilized FeO Nanoparticles in Aqueous Solution in a Controlled System, Eng. Life Sci., 18: 187–195 (2018).
[18] Loverde S.M., Klein M.L., Discher D.E., Nanoparticle Shape Improves Delivery: Rational Coarse Grain Molecular Dynamics (rCG-MD) of Taxol in Worm-Like PEG-PCL Micelles, Adv. Mater., 24: 3823–3830 (2012).
[19] Nash, D., Petrillo, B., Senkl, D., Optimizing the Preparation, Analysis and Formulation of Liposomes for Drug Delivery Applications, Biophys. J., 112:580a-  (2017).
[20] Alonso H., Bliznyuk A.A., Gready J.E., Combining Docking and Molecular Dynamic Simulations in Drug Design, Med. Res. Rev., 26: 531–568 (2006).
[22] Nadvorny D., Soares-Sobrinho J.L., de La Roca Soares M.F., Ribeiro A.J., Veiga F., Seabra G.M., Molecular Dynamics Simulations Reveal the Influence of Dextran Sulfate in Nanoparticle Formation with Calcium Alginate to Encapsulate Insulin, J. Biomol. Struct. Dyn.,     : 1–6 (2017).
[23] Khezri A., Karimi A., Yazdian F., Jokar M., Mofradnia S.R., Rashedi H., Tavakoli Z., Molecular Dynamic of Curcumin/Chitosan Interaction Using a Computational Molecular Approach: Emphasis on Biofilm Reduction, Int. J. Biol. Macromol., #pagerange# (2018).
[24] Separdar L., Davatolhagh S., Effect of Gold Nanoparticles on Structure and Dynamics of Binary Lennard-Jones Liquid: Wave-Vector Space Analysis, Phys. A Stat. Mech. Its Appl., 463: 163–173 (2016).
[25] Foroughi M.M., Elmi S., Dehdab M., Shahidi-Zandi M., Computational Evaluation of Corrosion Inhibition of Four Quinoline Derivatives on Carbon Steel in Aqueous Phase, Iran. J. Chem. Chem. Eng. (IJCCE), 38: 185–200 (2019).
[26] Wu L., Zhang Y., Wen Y.-H., Zhu Z.-Z., Sun S.-G., Molecular Dynamics Investigation of Structural Evolution of Fcc Fe Nanoparticles under Heating Process, Chem. Phys. Lett.,  502: 207–210 (2011).
[27] Mofradnia S.R., Ashouri R., Tavakoli Z., Shahmoradi F., Rashedi H., Yazdian F., Effect of Zero-Valent Iron/Starch Nanoparticle on Nitrate Removal Using MD Simulation, Int. J. Biol. Macromol., (2018).
[28] Rezapour N., Rasekh B., Mofradnia S.R., Yazdian F., Rashedi H., Tavakoli Z., Molecular Dynamics Studies of Polysaccharide Carrier Based on Starch in Dental Cavities, Int. J. Biol. Macromol., 121: 616–624 (2018).
[29] Zhao B., Huang J., Bartell L.S., Molecular Dynamics Studies of the Size and Temperature Dependence of The Kinetics of Freezing of Fe Nanoparticles, J. Solid State Chem., 207: 35–41 (2013).
[30] Safajou Jahankhanemlou M., Salami Kalajahi M., Modeling of Reversible Chain Transfer Catalyzed Polymerization by Moment Equations Method, Iran. J. Chem. Chem. Eng.(IJCCE), 32: 59–67 (2013).
[31] Das A., Ghosh M.M., MD Simulation-Based Study on the Melting and Thermal Expansion Behaviors of Nanoparticles Under Heat Load, Comput. Mater. Sci., 101: 88–95 (2015).
[32] Jamal Davoodi, Investigation of Mechanical and Thermal Properties of Cobalt Metal by Molecular Dynamics Simulation, Iran. J. Phys. Res., 11: 161–166 (1390).
[33] Tafreshi S.H., Mirdamadi S., Norouzian D., Khatami S., Sardari S., Optimization of Non-Nutritional Factors for a Cost-Effective Enhancement of Nisin Production Using Orthogonal Array Method, Probiotics Antimicrob. Proteins, 2: 267–273 (2010).
[34] Brown R.A.S., Govier G.W., High‐Speed Photography in the Study of Two‐Phase FlowCan. J. Chem. Eng., 39: 159–164 (1961).
[35] Bendjaballah N., Dhaouadi H., Poncin S., Midoux N., Hornut J.-M., Wild G., Hydrodynamics and Flow Regimes in External Loop Airlift Reactors, Chem. Eng. Sci., 54: 5211–5221 (1999).
[36] Panáček A., Kvítek L., Prucek R., Kolář M., Večeřová R., Pizúrová N., Sharma V.K., Nevěčná T., Zbořil R., Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity, J. Phys. Chem. B, 110: 16248–16253 (2006).
[37] Yazdian F., Shojaosadati S.A., Nosrati M., Pesaran Hajiabbas M., Malek Khosravi K., On-Line Measurement of Dissolved Methane Concentration During Methane Fermentation in a Loop Bioreactor, Iran. J. Chem. Chem. Eng. (IJCCE), 28: 85–93 (2009).
[39] Yazdian F., Shojaosadati S.A., Nosrati M., Vasheghani-Farahani E., Mehrnia M.R., Comparison of Different Loop Bioreactors Based on Hydrodynamic Characteristics, Mass Transfer, Energy Consumption and Biomass Production from Natural Gas. Iran. J. Chem. Chem. Eng. (IJCCE), 29: 37–56 (2010).
[41] Verlaan P., Van Eijs A.M.M., Tramper J., Van’t Riet K., Luyben K.C.A.M., Estimation of Axial Dispersion in Individual Sections of an Airlift-Loop Reactor, Chem. Eng. Sci., 44: 1139–1146 (1989).
[42] Fields P.R., Slater N.K.H., Tracer Dispersion in a Laboratory Air-Lift Reactor, Chem. Eng. Sci., 38: 647–653 (1983).
[43] Merchuk J.C., Yunger R., The Role o the Gas—Liquid Separator of Airlift Reactors in the Mixing Process, Chem. Eng. Sci., 45: 2973–2975 (1990)
[44] Petrović D.L., POŠ Arac D., Duduković A., Prediction of Mixing Time in Airlift Reactors, Chem. Eng. Commun., 133: 1–9 (1995).
[45] Gavrilescu M., Tudose R.Z., Mixing Studies in External-Loop Airlift Reactors, Chem. Eng. J., 66:  97–104 (1997).
[46] Klein P., Lapeyre G., Large W.G., Wind Ringing of the Ocean in Presence of Mesoscale Eddies, eophys. Res. Lett., 31:      -      (2004)
[47] Al Taweel A.M., Yan J., Azizi F., Odedra D.,
Gomaa H.G., Using in-Line Static Mixers to Intensify Gas–Liquid Mass Transfer Processes, Chem. Eng. Sci., 60: 6378–6390 (2005).
[48] Chisti Y., Moo‐Young M., On the Calculation of Shear Rate and Apparent Viscosity in Airlift and Bubble Column Bioreactors, Biotechnol. Bioeng., 34: 1391–1392 (1989).
[49] Sheehan B.T., Johnson M.J., Production of Bacterial Cells from Methane, Appl. Microbiol., 21: 511–515 (1971).
[50] Lamb S.C., Garver J.C., Batch‐and Continuous‐Culture Studies of a Methane‐Utilizing Mixed Culture, Biotechnol. Bioeng., 22: 2097–2118 (1980).
[51] Irani Z.A., Mehrnia M.R., Yazdian F., Soheily M., Mohebali G., Rasekh B., Analysis of Petroleum Biodesulfurization in an Airlift Bioreactor Using Response Surface Methodology, Bioresour. Technol., 102: 10585–10591 (2011).
[52] Fatemi S.M., Foroutan M., Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model, Iran. J. Chem. Chem. Eng. (IJCCE), 35: 1–10 (2016).
[53] Cheatham III T.E., Miller J.L., Spector T.I., Cieplak P., Kollman P.A., Molecular Dynamics Simulations on Nucleic Acid Systems Using the Cornell et al. Force Field and Particle Mesh Ewald Electrostatics, in ACS Publications, (1998).
[54] Kalé L., Skeel R., Bhandarkar M., Brunner R., Gursoy A., Krawetz N., Phillips J., Shinozaki A., Varadarajan K., Schulten K., NAMD2: Greater Scalability for Parallel Molecular Dynamics, J. Comput. Phys., 151: 283–312 (1999).
[55] Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K., Scalable Molecular Dynamics with NAMD, J. Comput. Chem., 26: 1781–1802 (2005).
[56] Nose S., Constant-Temperature Molecular Dynamics, J. Phys. Condens. Matter, 2:   -   (1990)
[57] Zoete V., Cuendet M.A., Grosdidier A., Michielin O., SwissParam: a Fast Force Field Generation Tool for Small Organic Molecules, J. Comput. Chem., 32: 2359–2368 (2011).
[58] Fritsch D., Koepernik K., Richter M., Eschrig H., Transition Metal Dimers as Potential Molecular Magnets, J. Comput. Chem., 1145: 2210–2219 (2008).
[59] Humphrey W., Dalke A., Schulten K., VMD: Visual Molecular Dynamics, J. Mol. Graph., 14: 33–38 (1996).
[60] He Y.Z., Gong J., Yu H.Y., Tao Y., Zhang S., Dong Z.Y., High production of Ectoine from Aspartate and Glycerol by Use of Whole-Cell Biocatalysis in Recombinant Escherichia Coli, Microb. Cell Fact., 14: 1–10 (2015).
[61] Jebbar M., Sohn-bo L., Bremer E., Blanco C., Ectoine-Induced Proteins in, 187: 1293–1304 (2005).
[62] Mofradnia S.R., Tavakoli Z., Yazdian F., Rashedi H., Rasekh B., Fe/starch Nanoparticle-Pseudomonas Aeruginosa: Bio-physiochemical and MD Studies, Int. J. Biol. Macromol., pp. #pagerange# (2018).
[63] Zhang D., Liu Z., Yang H., Liu A., Molecular Dynamics Study of Core–Shell Structure from Carbon Nanotube and Platinum Nanowire, Mol. Simul., 7022: 1–5 (2018).