Three Novel Sets of Cs2H[PW4Mo8O40] Based on Various Supports: insight Into Comparative Evaluation in Oxidative Desulfurization

Document Type : Research Article


1 Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, I.R. IRAN

2 Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-4383, Tehran, I.R. IRAN


Three novel heterogeneous catalysts were prepared by immobilization of a synthesized cesium salt of 4-tungsto-8-molybdophosphoric acid (abbreviated as CW4Mo8) on well prepared and modified support materials of UiO-66, microsphere SBA-15 and Graphene Oxide (GO). The aim of this work was the investigation of the support effects on the Oxidative DeSulfurization (ODS) performance under a similar condition. These catalysts were characterized using FTIR, XRD, BET, BJH, N2 adsorption-desorption, SEM, and EDX methods. The Cs modification was performed to have an insoluble CW4Mo8 on the support materials. The Keggin structure of the synthesized CW4Mo8 and well immobilization on the supports were confirmed by the characterization results. A comparative examination was performed on the capability of these nanocomposites as catalyst-adsorbent in the ODS process. Dibenzothiophene (DBT) in n-hexane was used as an oil model. The examination results indicated the special impact of the support type on the catalyst design; High surface area and porosity, and functional group type significantly affected the efficiency of DBT oxidation and adsorption of DBTO2 from fuel by these catalysts. The maximum removal of 100 and 99% of DBT was achieved using CW4Mo8 supported on mesoporous SBA-15 (after 60 min) and UiO-66 (after 120 min) respectively. Furthermore, the best catalyst could be reused four times without a remarkable decrease in activity.


Main Subjects

[1] Faghihian H., Naeemi S., Application of a Novel Nanocomposite for Desulfurization of a Typical Organo Sulfur Compound, Iran. J. Chem. Chem. Eng. (IJCCE), 32: 9-15 (2013).
[2] Diana J., Rita V., Jorge C.R., Baltazar de C., Salete S.B., Efficient Eco-sustainable Ionic Liquid-Polyoxometalate Desulfurization Processes for Model and Real Diesel, Appl. Catal., 537: 93-99 (2017).
[3] Rothlisberger A., Prins R., Intermediates in the Hydrodesulfurization of 4,6-dimethyl-Dibenzothiophene over Pd/γ-Al2O3, J. Catal., 235:229-240 (2005).
[5] Tuxen A.K., Fuchtbauer H.G., Temel B., Hinnemann B., Topsoe H., Knudsen K.G., Besenbacher F., Lauritsen J.V., Atomic-Scale Insight into Adsorption of Sterically Hindered Dibenzothiophenes on MoS2 and Co–Mo–S Hydrotreating Catalysts,  J. Catal., 295:146-154 (2012).
[6] Ma X., Sakanishi K., Mochida I., Hydrodesulfurization Reactivities of Various Sulfur Compounds in Vacuum Gas Oil, Ind. Eng. Chem. Res., 35: 2487-2494 (1996).
[7] Julião D., Gomes A, C., Pillinger M., Valença R., Ribeiro J.C., Gonçalves I.S., Balula S.S., Desulfurization of Liquid Fuels by Extraction and Sulfoxidation Using H2O2 and [CpMo(CO)3R] as Catalysts, Appl. Catal. B Environ., 230: 177-183 (2018).
[8] Gao S., Li J., Chen X., Abdeltawab A.A., Yakout S.M., Yu G., A Combination Desulfurization Method for Diesel Fuel: Oxidation by Ionic Liquid with Extraction by Solvent, Fuel., 224: 545-551 (2018).
[10] Zheng M., Hu H., Ye Z., Huang Q., Chen X., Adsorption Desulfurization Performance and Adsorption-Diffusion Study of B2O3 Modified Ag-CeOx/TiO2-SiO2, J. Hazardous Mat., 362: 424-435 (2019).
[11] Yi Z.,  Ma X.,  Song J.,  Yang X., Tang Q., Investigations In Enhancement Biodesulfurization of Model Compounds by Ultrasound Pre-Oxidation, Ultrason. Sonochem., 54: 110-120 (2019).
[12] Ye J.,  Zhang P., Zhang G., Wang S., Nabi M., Zhang Q., Zhang H., Biodesulfurization of High Sulfur Fat Coal with Indigenous and Exotic Microorganisms, J. Clean Prod., 197: 562-570 (2018).
[13] Ming Liang Kang, Xiang Wang, Jing Zhang, Yao Lu, Xuebing Chen, Lina Yang, Fangfang Wang, Boosting the Photocatalytic Oxidative Desulfurization of Dibenzothiophene by Decoration of MWO4 (M=Cu, Zn, Ni) on WO3, J. Environ. Chem. Eng., 7: 102809 (2019).
[14]Xuhe L., Xiuna Y., Feng Z.,  Jian Z.,  Hao Y., Wang Y., Zhao X., Yuan X., Ju J., Hu Sh., Construction of Novel Amphiphilic [Bmin]3PMo12O40/g-C3N4 Heterojunction Catalyst with Outstanding Photocatalytic Oxidative Desulfurization Performance under Visible Light, J. Taiwan. Inst. Chem. E.,  100: 210-219 (2019).
[15] Mjalli F.S., Ahmed O.U., Al-Wahaibi T., Al-Wahaibi Y., AlNashef I.M., Deep Oxidative Desulfurization of Liquid Fuels, Rev. Chem. Eng., 30: 337-378 (2014).
[16] Campos-Martin J.M., Capel-Sanchez M.C., Perez-Presas P., Fierro J.L.G., Oxidative Processes of Desulfurization of Liquid Fuels,  J. Chem. Technol. Biotechnol., 85: 879-890 (2010).
[17] Akbari A., Omidkhah M.R., Towfighi Darian J., Facilitated and Selective Oxidation of Thiophenic Sulfur Compounds Using MoOx/Al₂O₃-H₂O₂ System under Ultrasonic Irradiation., Ultrasound. Sonochem., 23: 231-237 (2015),
[19] Maciuca A.L., Ciocan C.E., Dumitriu E., Fajula F., Hulea V., V-, Mo- and W-Containing Layered Double Hydroxides as Effective Catalysts for Mild Oxidation of Thioethers And Thiophenes with H2O2, Catal. Today., 138: 33-37 (2008).
[20] Hulea V., Maciuca A.L., Fajula F., Dumitriu E., Catalytic Oxidation of Thiophenes and Thioethers with Hydrogen Peroxide in the Presence of W-Containing Layered Double Hydroxides, Appl. Catal. A., 313: 200-207 (2006).
[21] Honarmand S., Moosavi E., Karimzadeh. Synthesis of Zeolite Y from Kaolin and Its Model Fuel Desulfurization Performance: Optimized by Box-Behnken Method, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 78-90 (2020).
[22] Du S., Li F., Sun Q., Wang N., Jia M., Yu J., A Green Surfactant-Assisted Synthesis of Hierarchical TS-1 Zeolites with Excellent Catalytic Properties for Oxidative Desulfurization., Chem. Commun., 52: 3368-3371 (2016).
[23] Azimzadeh H., Akbari A., Omidkhah M.R., Catalytic Oxidative Desulfurization Performance of Immobilized NMP.FeCl3 Ionic Liquid on γ-Al2O3 SupportChem. Eng. J., 320: 189-200 (2017).
[25] Nie Y., Dong Y.X., Bai L., Dong H.F., Zhang X.P., Fast Oxidative Desulfurization of Fuel Oil Using Dialkylpyridinium Tetrachloroferrates Ionic Liquids, Fuel., 103:997-1002 (2013).
[26] Jiang W., Zhu W.S., Chang Y.H., Li H.M., Chao Y.H., Xiong J., Liu H., Yin Sh., Oxidation of Aromatic Sulfur Compounds Catalyzed by Organic Hexacyanoferrates in Ionic Liquids with a Low Concentration of H2O2 as an Oxidant, Fuel., 28: 2754-2760 (2014).
[27] Mesroghli Sh., Perman J.Y., Jorjani E., Vandewijngaarden J., Reggers G., Carleer R., Noaparast M., Changes and Removal of Different Sulfur forms after Chemical Desulfurization by Peroxyacetic Acid on Microwave Treated Coals, Fuel., 154: 59-70 (2015).
[29] Lidong W., Juan W., Peiyao X., Qiangwei L., Wendi Z., Shuai C., Selectivity of Transition Metal Catalysts
in Promoting the Oxidation of Solid Sulfites in Flue Gas Desulfurization
, Appl. Catal. A.,  508: 52-60 (2015).
[30] Li C., Zha B., Yao Z., Jiang Z., Liquid Polyoxometalate-Based Catalysts Lead to Highly Efficient Desulfurization of Waste Water, Polyhedron., 159: 176-181 (2019).
[31] Gao Y., Lv Z., Gao R., Zhang G., Zheng Y., Zhao J., Oxidative Desulfurization Process of Model Fuel under Molecular Oxygen by Polyoxometalate Loaded in Hybrid Material CNTs@MOF-199 as Catalyst,
J. Hazard. Mater., 359:258-265 (2018).
[32] Hao X.L., Ma Y.Y., Zang H.Y., Wang Y.H., Li Y.G., and Wang E.B., A Polyoxometalate‐Encapsulating Cationic Metal–Organic Framework as a Heterogeneous Catalyst for Desulfurization, Chem. Eur. J., 21: 3778-3784 (2015).
[33] Zhu W., Wu P., Chao Y., Li H., Zou F., Xun S., Zhu F., Zhao Z., A Novel Reaction-Controlled Foam-Type Polyoxometalate Catalyst for Deep Oxidative Desulfurization of Fuels, Ind. Eng. Chem. Res., 52: 17399-17406 (2013).
[34] Yu F., Liu C., Yuan B., Xie C., Yu S., Self-Assembly Heteropoly Acid Catalyzed Oxidative Desulfurization of Fuel with Oxygen, Catal Commun, 68: 49-52 (2015).
[35] Tang L., Luo G., Zhu M., Kang L., Dai B., Preparation, Characterization and Catalytic Performance of HPW-TUD-1 Catalyst on Oxidative Desulfurization, J. Ind. Eng. Chem., 19: 620-626 (2013).
[36] Ghubayra R.,  Nuttall C., Hodgkiss S., Craven M., Kozhevnikova E.F., Kozhevnikov I.V., Oxidative Desulfurization of Model Diesel Fuel Catalyzed by Carbon-Supported Heteropoly Acids, Appl Catal B: Environ, 253: 309-316 (2019).
 [37] Yue D., Jiaheng L., Lina Z.,  Zhenran G., Xiaodi D., Junsheng L., Highly Efficient Deep Desulfurization of Fuels by Meso/Macroporous H3PW12O40/TiO2 at Room Temperature, Mater Res Bull., 105: 210-219 (2018).
[40] Zhu W., Gu Q., Juan Hu J., Wu P., Yin S., Zhu F., Zhang M., Xion J., Li H., Fabrication of Functional Dual-Mesoporous Silicas by Using Peroxo-Tungstate Ionic Liquid and Their Applications in Oxidative Desulfurization, J. Porous Mat., 22: 1227-1233 (2015).
[41] Craven M., Xiao D., Kunstmann-Olsen C., Kozhevnikova E., Blanc F., Steiner A., Kozhevnikov I., Oxidative Desulfurization of Diesel Fuel Catalyzed by Polyoxometalate Immobilized on Phosphazene-Functionalized Silica, Appl. Catal. B., 231: 82-91 (2018).
[44] Zeng L., Xiao L., Long Y., Shi X., Trichloroacetic Acid-Modulated Synthesis of Polyoxometalate@UiO-66 for Selective Adsorption of Cationic Dyes, J. Colloid Interf Sci.,  516: 274–283 (2018).
[45] Ribeiro S.O., Julião D., Cunha-Silva L., Domingues V.F., Valença R., Ribeiro J.C., Castro B.D., Balula S.S., Catalytic Oxidative/Extractive Desulfurization of Model and Untreated Diesel Using hybrid Based Zinc-Substituted Polyoxometalates, Fuel., 166: 268-275 (2016).
[48] Huixiong W., Mei Z., Yixin Q., Haixia L., Hengbo Y., Preparation and Characterization of Tungsten-substituted Molybdophosphoric Acids and Catalytic Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran, Chin. J. Chem. Eng., 17: 200-206 (2009).
[49] Ding J., Zhiquan Y., Chong H., Xiaowen T., Ying L., Xiaojun N., Hongguo Z., UiO-66(Zr) Coupled with Bi2MoO6 as Photocatalyst for Visible-Light Promoted Dye Degradation, J. Colloid Interface. Sci., 497: 126-133 (2017).
[51] William H., Offeman R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80:1339-1339 (1958).
[53] Crake A., Christoforidis K.C., Kafizas A., Zafeiratos S., Petit C., CO2 Capture and Photocatalytic Reduction Using bifunctional TiO2/MOF Nanocomposites under UV–vis Irradiation, Appl. Catal. B., 210: 131-140 (2017).
[57] Yang F., Li W., Tang B., Facile Synthesis of Amorphous UiO-66 (Zr-MOF) for Supercapacitor Application, J. Alloys Compd., 733: 8-14 (2018).
[58]  Mardiroosi A., Mahjoub A.R., Fakhri H., Efficient Visible Light Photocatalytic Activity Based on Magnetic Graphene Oxide Decorated ZnO/NiO, J. Mater Sci: Mater. Electron., 28: 11722-11732 (2017).
[61] Khodadadi A., Mokhtarani B., Mortaheb H.R., Deep and Fast Oxidative Desulfurization of Fuels Using Graphene Oxide-Based Phosphotungstic Acid Catalysts, Fuel., 236: 717-729 (2019).