Experimental Data and Modeling of Salt Effect on Liquid-Liquid Equilibrium of the Ternary (Water+1-Propanol+Hexane) System at 298K

Document Type : Research Article

Authors

1 Department of Chemical Engineering, University of Biskra, Biskra, ALGERIA

2 Laboratoire de Recherche en Génie Civil, Hydraulique, Développement Durable et Environnement, Université de Biskra, ALGÉRIE

Abstract

The effect of NaCl on the LLE data for the ternary system, water + 1-propanol + hexane, were determined at 298Kunder atmospheric pressure. The curve of solubility and tie-line data of this system were determined by experimental analysis. The experimental results showed that the addition of NaCl significantly affected the two-phase region of the ternary system, the enlargement of the two-phase region occurred with an increase of salt concentration in the initial aqueous phase. Distribution coefficients and separation factors were also calculated and compared at different NaCl concentrations. In addition, the experimental tie-line data were correlated with the NRTL model. Also, the parameters of this model were estimated with five nature-inspired metaheuristic solvers. These algorithms are Genetic Algorithms (GA), Monkey- Krill Herd Hybrid (MAKHA), Intelligent Firefly Algorithm (IFA), Cuckoo Search (CS), and Harmony Search Algorithm(HAS). The capabilities and limitations of these solvers have been analyzed. Results showed that all algorithms outperformed, in particular, MAKHA give the best efficiency-reliability for the prediction of LLE.

Keywords

Main Subjects


[1] Stoye D., Solvents, in, Weinheim, (Ed.), “Ullmann Encyclopedia of Industrial Chemistry”, 5th ed., VCH Publisher Inc., New York (1993).
[2] Kirk R.E., Othmer D.F., (Eds.), “Kirk‐OthmerEncyclopedia of Chemical Technology”, 3rd ed., Vol. I, Wiley‐Interscience, New York (1978).
[3] Bhupesh C. R., Awual M. R., Goto M., Liquid-liquid Equilibrium Data for the Ternary Systems of Propionic Acid-Water-Solvents, J. Applied Sci.,6: 411-415(2006).
[9] Desai M. L., Eisen E. O., Salt Effects in Liquid-Liquid Equilibria, J. Chem. Eng. Data., 16: 200–202 (1971).
[10] Merzougui A., Hasseine A., Laiadi D., Application of The Harmony Search Algorithm to Calculate the Interaction Parameters in Liquid-Liquid Phase Equilibrium Modeling, Fluid Phase Equilib.,324: 94-101 (2012).
[12] Merzougui A., Hasseine A., Laiadi D., Liquid-Liquid Equilibria of {N-Heptane + Toluene + Aniline} Ternary System: Experimental Data and Correlation, Fluid Phase Equilib.,308: 142-147 (2011).
[13] Laiadi D., Hasseine A., Merzougui A., HomotopyMethod to Predict Liquid-Liquid Equilibria for Ternary Mixtures of (Water+ Carboxylicacid+ Organic Solvent), Fluid Phase Equilib.,313: 114-120 (2011).
 [14] Merzougui A., Labed N., Hasseine A., Bonilla-Petriciolet A., Laiadi D. And Bacha O., Parameter Identification in Liquid-Liquid Equilibrium Modeling of Food-Related Thermodynamic Systems Using Flower Pollination Algorithm,The Open Chemical Engineering Journal, 10: 59-73 (2016).
[15] Merzougui A., Bonilla-Petriciolet A., Hasseine A., Laiadi D., Labed N., Modeling of Liquid–Liquid Equilibrium of Systems Relevant for Biodiesel Production Using Backtracking Search Optimization, Fluid Phase Equilib.,388: 84–92 (2015).
[16]Bhargava V., Fateen S.E.K, Bonilla-Petriciolet A., Cuckoo Search: ANew Nature-Inspired Optimization Method For Phase Equilibrium Calculations, Fluid Phase Equilibria, 337: 191–200 (2013).
[17] Ferrari J.C., Nagatani G., Corazza F.C., Oliveira J.V., Corazza M. L, Application of Stochastic Algorithms for Parameter Estimation in the Liquid–Liquid Phase Equilibrium Modeling, Fluid Phase Equilib.,280: 110-119 (2009).
[19] Fernández-Vargas J. A., Segovia-Hernández J. G., An Improved ant Colony Optimization Method And Its Application for the Thermodynamic Modeling of Phase Equilibrium, Fluid Phase Equilib.,353: 121-131(2013).
[21]Zhang L., Han J., Deng D., JiJ., Selection of Ionic Liquids as Entrainersfor Separation of Water and 2-Propanol, Fluid Phase Equilib.,255: 179–185 (2007).
[23]Hu M., Jin L., Li S., Jiang Y., Quaternary Liquid–Liquid Equilibrium for Water + 1-Propanol + Cesium Sulfate + Cesium Chloride At 25 °C, Fluid Phase Equilib.,242: 136–140 (2006).
[24] Jurkiewicz K., Phase Equilibrium in the System of Water, Alcohol or Ketone, and Sodium Chloride, Fluid Phase Equilib.,251: 24–28 (2007).
[26] Balaban A., Kuranov G., Smirnova N., Phase Equilibria Modeling in Aqueous Systems Containing 2-Propanol and Calcium Chloride or/and Magnesium Chloride, Fluid Phase Equilib.,194–197: 717–728 (2002).
[27] Ghanadzadeh H., Ghanadzadeh  A., Bahrpaima K., Measurement And Prediction of Tie-Line Data for Mixtures of (Water+1-Propanol+Diisopropyl Ether): LLE Diagrams as a Function of Temperature, Fluid Phase Equilib., 277:126–130 (2009).
[28] Tan T.C., Kannangara K.K.D.D.S., Liquid–Liquid Equilibria of Water/1-Propanol/Methyl Ethyl Ketone/Potassium Chloride, Fluid Phase Equilib.,190: 179–189 (2001).
[29] Safaeefar P., Ang H.M., Kuramochi H., Asakuma Y., Fukui K., Measurement and Correlation of the Solubility of Mnso4·H2O in 2-Propanol + Water + Mgso4·7H2O Solutions, Fluid Phase Equilib.,262: 76-81 (2007).
[33] Çehreli S., Özmen D., Dramur  U., (Liquid + Liquid) Equilibria of (Water + 1-Propanol + Solvent) at T = 298.2 K, Fluid Phase Equilib., 239: 156-160 (2006).
[34]Clará R.A., De Doz M., Barnes N. H., Sólimo N., Influence of Temperature on the Liquid-to-Liquid Extraction of 1-Propanol from Aqueous Solutions Containing Nitromethane, Fluid Phase Equilib.,198: 267-279 (2002).
[36] Stoicescu C., Iulian O., Isopescu R., Liquid–Liquid Phase Equilibria of 1-Propanol + Water + N-Alcohol Ternary Systems at 298.15 K and Atmospheric Pressure, J. Chem. Eng. Data.,56: 3214–3221 (2011).
[37] Yitzhak M., “The Properties of Solvents”, Vol.4, John Wiley &Sons Ltd, England, (1998).
[39] Otero J., Comesaňa J. F., Correa J. M. A., Liquid−Liquid Equilibria of the System Water + Acetic Acid + 2-Hexanone at 25 °C and 35 °C, J. Chem. Eng. Data.,46: 1452-1456 (2001).
[40] Othmer  D.F., White R.E., Trueger  E., Liquid-Liquid Extraction Data, Ind. Eng. Chem.,33: 1240–1248 (1941).
[41] Deenadayalu N., Ngcongo K.C., Letcher T.M., Ramjugernath D.J., Liquid−Liquid Equilibria for Ternary Mixtures (an Ionic Liquid + Benzene + Heptane or Hexadecane) at T = 298.2 K and Atmospheric Pressure, Chem. Eng. Data, 51: 988–991(2006).
[42] Govindarajan M. P., Sabarathinam L., Salt Effect on Liquid-Liquid Equilibrium of The Methyl Isobutyl Ketone + Acetic Acid+ Water System at 35 °C, Fluid Phase Equilib.,108: 269-292 (1995).
[43] Renon H., Prausnitz J. M., Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AicheJ.,14: 135-144 (1968).
[44] Sahoo R.K., Banerjee A.T.S.A., Khanna A., ImprovedBinary Parameters Using GA for Multi-Component Aromatic Extraction: NRTL Model Without and with Closure Equations, Fluid Phase Equilib.,239: 107-119 (2006).
[45] Khalil A., Fateen S.E., Bonilla-Petriciolet A., MAKHA–A New Hybrid SwarmIntelligence Global Optimization Algorithm, Algorithms, 8: 336-365 (2015).
[46] Yang X.S., Firefly “Algorithm. Nature-Inspired Metaheuristic Algorithms”, Luniver Press, UK (2008).
[47] Fateen S.K., Bonilla-Petriciolet A., “Intelligent Firefly Algorithm for Global Optimization”, in X.S. Yang (Ed.), "Cuckoo Search and Firefly Algorithm", SpringerInternational Publishing, Cham., 315-330 (2014).
[48] Yang X.S., Deb S., Cuckoo Search via LévyFlights. in: “Proceedings of World Congress on Nature &Biologically Inspired Computed”, IEEE Publications, 210–214 (2009).
[49] Geem Z.W., Kim J.H., Loganathan G.V., A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76: 60-68 (2001).
[50] Treybal R.E., “Liquid Extraction”, Mcgraw-Hill, New York (1963).
[51] Kunthakudee  N., Pancharoen U., Fulajtárová K., Soták T., Hronec M., Ramakul P., Salt Effect on the Liquid-Liquid Equilibrium of Water-Furfuryl Alcohol-Furfural System at 298.15 K, Korean J. Chem. Eng., 34: 1-8 (2017).
[52] Eisen E.O., Joffe J., Salt Effects in Liquid-Liquid Equilibria, J. Chem. Eng. Data., 11: 480-484(1966).