Synthesis of N-CNT-TiO2 Nanocatalyst: Application in Direct Oxidation of H2S to Sulfur

Document Type : Research Article


1 Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

2 Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14857-33111 Tehran, I.R. IRAN



In this study, nitrogen-doped MWCNT-TiO2 nanocatalyst (N-CNT-TiO2) with 1, 3, and 5 wt. % nitrogen has been synthesized and its catalytic activity in the oxidation of H2S to sulfur has been studied at a temperature of 200°C and O2/H2S mole ratio of 0.5 and compared with those of neat TiO2 and TiO2-CNT hybrid. Their structure, morphology, and chemical properties have been determined by N2 adsorption-desorption isotherms, XRD, SEM, TEM, UV, and FT-IR. N-CNT-TiO2 exhibited improved performance compared with TiO2-CNT due to the presence of nitrogen groups. In addition, the nanocatalyst was comparable (up to 5%) with TiO2 because of the presence of a lower bandgap and synergistic effects. Furthermore, 5%N-CNT-TiO2 has shown the highest catalytic activity among N-CNT-TiO2 nanocatalysts due to its higher surface area and pore volume.


Main Subjects

[1] Ullah R., Bai P., Wu P., Liu B., Subhan F., Yan Z., Cation–Anion Double Hydroly- Sis Derived Mesoporous Mixed Oxides for Reactive Adsorption Desulfurization. J. Microporous Mesoporous Mater, 238:36–45 (2017).
[3] Liu D., Wang Q., Wu J., Liu Y., A Review of Sorbents for High-Temperature Hydrogen Sulfide Removal from Hot Coal Gas, J. Environmental Chemistry Letters, 17: 259-276 (2019).
[4] Ribeiro S.O., Juliao D., Cunha-Silva L., Domingues V.F., Valenca R., Ribeiro J.C., Catalytic Oxidative/Extractive Desulfurization of Model and Un- Treated Diesel Using Hybrid Based Zinc-Substituted Polyoxometalates, J. Fuel, 166: 268–75 (2016).
[5] Tan R., Goltz R.H., Padilla G., Badhwar A.N., In Cross-Linked Macroptous Polymer Used for Selective Removal of Hydrogen Sulfide from a Gas Stream, US Patent App. 15/551,323, (2018).
[6] Zhang X., Tang Y., Qu S., Da J., Hao Z., H2S‑Selective Catalytic Oxidation: Catalysts and Processes, J. ACS Catal., 5: 1053-1067 (2015).
[7] Reyes-Carmona A., Soriano M. D., Nieto J.M.L.P., Jones D.J., Jimenez-Jimenez J., Jimenez-Lopez A., Iron-Containing SBA-15 as Catalyst for Partial Oxidation Of Hydrogen Sulfide, J. Catal. Today, 210: 117-123 (2013).
[8] Soriano M.D., Nieto J.M.L., Ivars F., Concepcion P., Rodriguez-Castellon E., Alkali-Promoted V2O5 Catalysts for the Partial Oxidation of H2S to Sulphur, J. Catalysis Today, 192: 28-35 (2012).
[9] Soriano M.D., Rodriguez-Castellon E., Garcia-Gonzalez E., Nieto J.M.L.P., Catalytic Behavior of Nav6o15 Bronze for Partial Oxidation of Hydrogen Sulfide, J. Catal. Today, 238: 62-68 (2014).
[10] Wang S.H., Wang Y.B., Dai Y.M., Jehng J.M., Preparation and Characterization of Hydrotalcite-Like Compounds Containing Transition Metal as a Solid Base Catalyst for the Transesterification, J. Appl. Catal. A, 439-440: 134-141 (2012).
[11] Zhang X., Wang Z., Qiao N.L., Qu S.Q., Hao Z.P., Selective Catalytic Oxidation of H2S over Well-Mixed Oxides Derived from Mg2AlxV1–X Layered Double Hydroxides, J. ACS. Catal, 4: 1500-1510 (2014).
[12] Rezaee M., Kazemeini M., Fattahi M., Rashidi A.M., Vafajoo L., Oxidation of H2S to Elemental Sulfur over Alumina Based Nanocatalysts: Synthesis and Physiochemical Evaluations, J. Scientia Iranica, J. Transactions C: Chemistry and Chemical Engineering, 23: 1160-1174 (2016).
[13] Sun F., Liu J., Chen H., Zhang Z., Qiao W., Long D., Nitrogen-Rich Mesoporous Carbons: Highly Efficient, Regenerable Metal-Free Catalysts for Low-Temperature Oxidation of H2S, J. ACS. Catal, 3: 862-870 (2013).
[14] Xiao Y., Wang S., Wu D., Yuan Q., Catalytic Oxidation of Hydrogen Sulfide over Unmodified and Impregnated Activated Carbon, J. Sep. Purif. Technol, 59: 326-332 (2008).
[15] Xiao Y., Wang S., Wu D., Yuan Q.J., Experimental and Simulation Study of Hydrogen Sulfide Adsorption on Impregnated Activated Carbon Under Anaerobic Conditions. J. Hazard. Mater, 153:1193-1200 (2008).
[16] Chizari K., Deneuve A., Ersen O., Florea I., Liu Y., Edouard, D., Nitrogen-Doped Carbon Nanotubes
as a Highly Active Metal-Free Catalyst for Selective Oxidation
, J. Chemsuschem, 5:102-108 (2012).
[17] Abbasabadi K., Rashidi A.M., Khodabakhshi S., Benzenesulfonic Acid-Grafted Graphene as a New and Green Nanoadsorbent in Hydrogen Sulfide Removal. J. Natural Gas Science and Engineering, 28: 87-94 (2016).
[18] Yu D., Nagelli E., Du F., Dai L., Metal-Free Carbon Nanomaterials Become More Active Than Metal Catalysts and Last Longer, J. Phys. Chem. Lett, 1: 2165-2173 (2010).
[19] Ayala P., Arenal R., Loiseau A., Rubio A., Pichler T., The Physical and Chemical Properties of Heteronanotubes, J. Modern Physics, 82:1843-1885 (2010).
[20] Ba H., Viet C., Nhut Y.M., Granger P., Ledoux M.J., Huu C.P., Nitrogen-Doped Carbon Nanotube Spheres as Metal-Free Catalysts for the Partial Oxidation of H2S, J. Comptes Rendus Chimie, 19: 1303-1309 (2016).
[21] Yang Z., Liu Z., Zhang H., Yu B., Zhao Y., Wang H., N-Doped Porous Carbon Nanotubes: Synthesis and Application in Catalysis, J. Chemical Communication, (2017).
 [22] Wang L., Shen L., Li Y., Zhu L., Shen J., Wang L., Enhancement of Photocatalytic Activity on Tio2-Nitrogen-Doped Carbon Nanotubes Nanocomposites. International Journal of Photoenergy, (2013).
[23] Chizari K., Janowska I., Houlle M., Florea I., Ersen O., Romero T., Tuning of Nitrogen-Doped Carbon Nanotubes as Catalyst Support for Liquidphase Reaction, J. Appl. Catal. A. Gen, 380: 72–80 (2010).
[24] Su D.S., Zhang J., Frank B., Thomas A., Wang X.,  Paraknowitsch J., Metal-Free Heterogeneous Catalysis for Sustainable Chemistry, J. Chemsuschem, 3: 169-180 (2010).
[25] Duong-Vieta C., Truong-Phuoc L., Tran-Thanh T., Nhuta J.M., Nguyen-Dinh L., Janowska I., Nitrogen-Doped Carbon Nanotubes Decorated Silicon Carbide as Ametal-Free Catalyst for Partial Oxidation of H2S, J. Applied Catalysis A: General. 482:397–406 (2014).
[26] Ba H., Duong-Viet C., Liu Y., Nhut J.M., Granger P., Ledoux M.J., Nitrogen-Doped Carbon Nanotube Spheres as Metal-Free Catalysts for the Partial Oxidation of H2S. J. C. R. Chimie, 19: 1303-1309 (2016).
[27] Ghasemy E., Motejadded H.B., Rashidi A.M., Hamzehlouyan T., Yousefian Z., N-Doped CNT Nanocatalyst Prepared from Camphor And Urea for Gas Phase Desulfurization: Experimental and DFT Study, J. Taiwan Institute of Chemical Engineers, 85: 121-131 (2018).
[29] Payan A., Fattahi M., Roozbehani B., Jorfi S., Enhancing Photocatalytic Activity of Nitrogen Doped TiO2 for Degradation of 4-Chlorophenol under Solar Light Irradiation, Iranian Journal of Chemical Engineering (Ijche), 15: 3-14(2018).
[32] Daraee M., Baniadam M., Rashidi A.M., Maghrebi M., Synthesis Of Tio2-CNT Hybrid Nanocatalyst
and Its Application In Direct Oxidation of H2S to S
, J. Chemical Physics, 511: 7-19 (2018).
[33] Rashidi A.M., Akbarnejad M.M., Khodadadi A.A., Mortazavi Y., Ahmadpour A., Single-Wall Carbon Nanotubes Synthesized Using Organic Additives to Co–Mo Catalysts Supported on Nanoporous MgO,
J. Nanotechnology, 18: 315-605 (2007).
[34] Wood K.N., Ohayrea R., Pylypenko S., Recent Progress on Nitrogen/Carbon Structures Designed
for Use in Energy and Sustainability Applications
, J. Energy & Environmental Science, 7: 1212 (2014).
[35] Khosravifard E., Salavati-Niasari M., Dadkhah M., Sodeifian G., Synthesis and Characterization of
TiO2-Cnts Nanocomposite and Investigation of Viscosity and Thermal Conductivity of a New Nanofluid
J. Nano Structure, 2:191-197 (2010).
[36] Lin J., Ma D., Li Y., Zhang P., Mi H., Deng L., Suna L., Rena X.Z., In Situ Nitrogen Doping of TiO2
by Plasma Enhanced Atomic Layer Deposition for Enhanced Sodium Storage Performance
, J. Dalton Trans., 46:13101 (2017).
[37] Chizari K., Vena A., Laurentius L., Sundararaj U., The Effect of Temperature on the Morphology
and Chemical Surface Properties of Nitrogen-Doped Carbon Nanotubes
, J. Carbon, 68: 369 –379 (2014).
[38] Rodriguez J.A., Chaturvedi S., Jirsak T., The Bonding of Sulfur to Pd Surfaces: Photoemission and Molecular–Orbital Studies, J. Chemical Physics Letters, 296:421-428 (1998).
[39] Rodriguez J.A., Chaturvedi S., Kuhn M., Herbek J., Reaction of H2S and S2 with Metal/Oxide Surfaces: Band-Gap Size and Chemical Reactivity. J. Phys. Chem, 102: 5511-5519 (1998).
[40] Rodriguez J.A., Jirsak T., Freitag A., Hansonjohn J.C., Chaturvedi Z.L.,. Interaction of SO2 with CeO2
and Cu/Ceo2 Catalysts: Photoemission, XANES and TPD Studies
, J. Catalysis Letters, 62: 113-119 (1999).
[43] Soroodan Miandoab E., Fatemi Sh., Upgrading TiO2 Photoactivity under Visible Light by Synthesis of MWCNT/TiO2 Nanocomposite, Int. J. Nanosci. Nanotechnol., 11: 1-12 (2015).
[44] Huang W.F.,  Chen H.T.,  Lin M.C., Density Functional Theory Study of the Adsorption and Reaction of H2S on TiO2 Rutile (110) and Anatase (101) Surfaces, J. Phys. Chem. C, 113: 20411–20420 (2009).
[45] Shahzad M., Hussain S.T., Ahmed N., Use of Pure and Sulfur Doped TiO2 Nanoparticles for High Temperature Catalytic Destruction of H2S Gas, J. Chalcogenide Letters, 10:19 – 26 (2013).
[46] Liu Y., Viet C.D.,  Luo J.,  Hébraud A., Schlatter G., Ersen O., Nhut J.M., One‐Pot Synthesis of a Nitrogen‐Doped Carbon Composite by Electrospinning as a Metal‐Free Catalyst for Oxidation of H2S to Sulfur, J. Chem Cat Chem, 2957-2964 (2015).
[47]  BaH., Liu Y., Phuoc L.T., VietC.D., MuX.,Doh W.H., ThanhT.T., Baaziz W., DinhL.N.,Nhut J.M., Janowska I., Begin D., Zafeiratos S., Granger P., Tuci G., Giambastiani G., Banhart F., LedouxM.J., Huu C.P., A Highly N-Doped Carbon Phase “Dressing” of Macroscopic Supports for Catalytic Applications, J.C hem. Commun., 51: 14393-14396 (2015).
[48] Zhang Z., Wang J., Li W., Wang M., Qiao W., Long D., Ling L., Millimeter-Sized Mesoporous Carbon Spheres for Highly Efficient Catalytic Oxidation of Hydrogen Sulfide at Room Temperature, J. Carbon, 96: 608-615 (2016).
[49] Https://Www.Researchgate.Net/Post/How Does Capillary Condensation Affect Catalytic Activity of a Surface.
[50]Chen Q., Wang J., Liu X., Zhao X., Qiao W., Long D., Ling L., Alkaline Carbon Nanotubes as Effective Catalysts for H2S Oxidation, J. Carbon, 49: 3773-3780 (2011).