Kinetics and Thermodynamics of Uranium Adsorption Using Impregnated Magnetic Graphene Oxide

Document Type : Research Article


Nuclear Materials Authority, 530 P.O Box Maadi, Cairo, EGYPT



Magnetic Graphene Oxide(MGO) impregnated Di(2-Ethyl Hexyl)Phosphoric Acid (D2EHPA) (DMGO) was prepared by multi-impregnation. The structures of GO and DMGO were characterized by FT-IR, TGA, EDX, SEM, and XRD. The adsorption capacity for U(VI) from aqueous solution is 154.4 mg/g  at pH 5. The essential factors that affected U(VI) adsorption such as initial pH, contact time, and temperature were investigated. The adsorption is highly dependent on the solution pH. In addition, the adsorption isotherm and thermodynamics were investigated. The adsorptions of U(VI) from aqueous solution on DMGO was fitted to the Langmuir adsorption isotherms. The adsorption of U(VI) on DMGO is remarkably improved byGO impregnated with D2EHPA. Thermodynamic parameters further show that the sorption is an endothermic and spontaneous process. DMGO is a powerful promising sorbent for theefficient removal of U(VI) from aqueous solutions.


Main Subjects

[1] D. Brugge, Delemos J.L., Oldmixon B., Exposure Pathways and Health Effects Associated with Chemical and Radiological Toxicity of Natural Uranium: A Review, Rev. Environ. Health, 20: 177-    (2005).
[2] Metwally E., Kinetic Studies for Sorption of Some Metal Ions from Aqueous Acid Solutions onto Tda Impregnated Resin, J. Radional. Nucl. Chem., 270: 559-     (2006).
[4] Gado M.A., Sorption of Thorium Using Magnetic Graphene Oxide Polypyrrole Composite Synthesized from Natural Source, Separation Science and Technology, 53(13): 2016-2033 (2018).
       Doi: 10.1080/01496395.2018.
[5] Cecal A., Humelnicu D., Rudic V., Cepoi L., Ganju D., Cojocari A., Uptake of Uranyl Ions from Uranium Ores and Sludges by Means of Spirulina Platensis, Porphyridium Cruentum and Nostok Linckia Alga, Bioresour Technol, 118:19–23 (2012).
[6] Hierro A., Martın Je., Olıas M., Vaca F., Bolivar Jp., Uranium Behaviour in an Estuary Polluted by Mining and Industrial Effluents: the Rıa of Huelva (Sw of Spain), Water Res., 47:6269–6279 (2013).
[7] Tan Lc., Wang J., Liu Q., Sun Yb., Zhang Hs., Wang Yl., Jing Xy., Liu Jy., Song Dl., Facile Preparation of Oxine Functionalized Magnetic Fe3O4 Particles for Enhanced Uranium(Vi) Adsorption, Colloid Surf A, 466:85–91 (2015).
[8] Zhang Cd., Dodge Cj., Malhotra Sv., Francis Aj., Bioreduction and Precipitation of Uranium Inionic Liquid Aqueous Solution by Clostridium Sp., Bioresour Technol., 136:752–756 (2013).
[9] Tapia-Rodriguez A., Luna-Velasco A., Field Ja., Sierra-Alvarez R., Anaerobic Bioremediation of Hexavalent Uranium in Groundwater by Reductive Precipitation with Methanogenic Granular Sludge, Water Res., 44: 2153–2162 (2010).
[10] Shen Jj., Schafer A., Removal of Fluoride and Uranium by Nanofiltration and Reverse Osmosis:
A Review,
Chemosphere, 117: 679–691 (2014).
[12] Li J., Zhang Y., Remediation Technology for the Uranium Contaminated Environment: A Review, Procedia Environ Sci., 13:1609–1615 (2012).
[13] Yu J., Bai H., Wang J., Li Z., Jiao C., Liu Q., Zhang M., Liu L., Synthesis of Alumina Nanosheets via Supercritical Fluid Technology with High Uranyl Adsorptive Capacity, New. J. Chem., 37: 366–372
[14] Bai Z.Q., Yuan l.-Y., Zhu L., Liu Z.-R., Chu Sh.-Q., Zheng L.-R., Zhang J., Chai Z.-F., Shi W.-Q., Introduction of Amino Groups Into Acid-Resistant Mofs for Enhanced U(Vi) Sorption, J. Mater. Chem. A, 3: 525-534 (2014).
[16] Roberto J.B., Rubia T.D., Basic Research Needs for Advanced Nuclear Energy Systems, Jom, 59: 16–19 (2007).
[18] Negm S.H., Abd El-Hamid A.A.M., Gado M.A.,
El-Gendy H.S., Selective Uranium Adsorption Using Modified Acrylamide Resins, Journal of Radioanalytical and Nuclear Chemistry (2018).
[19] Fang J., Gao B., Mosa A., Zhan L., Chemical Activation of Hickory and Peanut Hull Hydrochars for Removal of Lead and Methylene Blue from Aqueous Solutions, Chem.Speciat. Bioavailab., 29: 197–204 (2017).
[20] Fang J., Zhan L., Ok Y.S., Gao B., Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass, J. Ind. Eng. Chem., 57: 15–21 (2018).
[21] Inyang M., Gao B., Zimmerman A., Zhang M., Chen H., Synthesis, Characterization, and Dye Sorption Ability of Carbon Nanotube–Biochar Nanocomposites, Chem. Eng.J.,236: 39–46(2014).
[23] Chen H., Gao B., Li H., Removal of Sulfamethoxazole and Ciprofloxacin from Aqueous Solutions by Graphene Oxide, J. Hazard. Mater., 282: 201–207 (2015).
[24] Gu D., Fein J.B., Adsorption of Metals Onto Graphene Oxide: Surface Complexation Modeling and Linear Free Energy Relationships, Colloids Surf. A Physicochem. Eng. Asp., 481: 319–327 (2015).
[25] Paredes J., Villar-Rodil S., Martinez-Alonso A., Tascon J., Graphene Oxide Dispersions in Organic Solvents, Langmuir, 24: 10560–10564 (2008).
[26] Madadrang C.J., Kim H.Y., Gao G., Wang N., Zhu J., Feng H., Hou S., Adsorption Behavior of Edta-Graphene Oxide for Pb (Ii) Removal, Acs Applied Materials & Interfaces, 4(3): 1186–1193  (2012).
[27] Peng W., Li H., Liu Y., Song S., A Review on Heavy Metal Ions Adsorption from Water by Graphene Oxide and Its Composites, Journal of Molecular Liquids, 230:  496–504 (2017).
[28] Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R., Adsorption of Divalent Metal Ions from Aqueous Solutions Using Graphene Oxide, Dalton Transactions, 42(16): 5682-    (2013).
[29] Wang Z., Zhu W., Qiu Y., Et Al. Biological and Environmental Interactions of Emerging Two-Dimensional Nanomaterials, Chem Soc Rev., 45: 1750–1780 (2016).
[30] Shao D., Hou G., Li J., Wen T., Ren X., Wang X., Pani/Go as a Super Adsorbent for the Selective Adsorption of Uranium(Vi), Chemical Engineering Journal, 255: 604–612 (2014).
[31] Liu S., Ouyang J., Luo J., Sun L., Huang G.,  Ma J., Removal of Uranium(Vi) from Aqueous Solution Using Graphene Oxide Functionalized with Diethylenetriaminepentaacetic Phenylenediamine. Journal of Nuclear Science and Technology, 55(7): 781–791 (2018).
[32] Kim J., Cote L.J., Kim F., Yuan W., Shull K.R., Huang J., Graphene Oxide Sheets at Interfaces, Journal of American Chemical Society, 9, 132: 818 (2010).
[33] Chenlu B., Lei S., Weiyi X., Bihe Y., Charles A.W., Jianliu H., Yuqiang G., Yuan H., Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and its Polymer Nanocomposites by Masterbatch- Based Melt Blending, Journal of materials chemistry, 22: 6088-      (2012).
[34] Massart R., Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media, IeeeTransactions Magnetic, 17: 1247-     (1981).
[35] Goods J.B., Sydlik S.A., Walish J.J., Swager T.M., Phosphate Functionalized Graphene with Tunable Mechanical Properties, Advanced Materials, 26(5): 718–723 (2013).
[36] Liu X., Li J., Wang X., Chen C., Wang X., High Performance of Phosphate-Functionalized Graphene Oxide for the Selective Adsorption of U(Vi) from Acidic Solution, Journal of Nuclear Materials, 466: 56–64 (2015).
[37] Zhao G., Li J., Ren X., Chen C., Wang X., Few-Layered Graphene Oxide Nanosheets as Superior Sorbents for Heavy Metal Ion Pollution Management, Environmental Science & Technology, 45(24): 10454–10462 (2011).
[38] Gado M.A., Morsy A., Preparation of Poly-Aniline-Magnetic Porous Carbon Composite for Using
as Uranium Adsorbent
, American J. Materials Synthesis and Processing, 3: 32-      (2017).
[39] Afifi S., Mustafa M., El Sheikh E., Gado M.A.S., Extraction and Determination of Thorium and Its Application on Geologic Samples Using Trioctyl Phosphine Oxide, Arab. J. Nucl. Sci. Appl., 45(3):
1–16 (2012).
[40] Kula I., Ugurlu M., Karaoglu H., Celik A., Adsorption of Cd(Ii) Ions from Aqueous Solutions Using Activated Carbon Prepared from Olive Stone by ZnCl2 Activation, Bioresour. Technol., 99: 492–501 (2008).
[41] Manju G.N., Raji C., Anirudhan T.S., Evaluation of Coconut Husk Carbon for the Removal of Arsenic from Water, Water Res., 32: 3062–3070 (1998).
[43] Ho Y.S, Mckay G., Pseudo-Second Order Model for Sorption Processes, Process. Biochem., 34: 451-465 (1999).
        Doi 10.1007/S13201-015-0375-Y.
[45] Li Y., Yue Q., Gao B., Adsorption Kinetics and Desorption of Cu(Ii) and Zn(Ii) from Aqueous Solution onto Humic Acid, Journal of Hazardous Materials, 178 (1–3): 455–461 (2010).
[46] Zhang Y., Li Y., Ning Y., Liu D., Tang P., Yang Z., Wang X., Adsorption and Desorption of Uranium(Vi) onto Humic Acids Derived From Uranium-Enriched Lignites, Water Science and Technology, 77(4): 920–930 (2017).
[47] Atia B.M., Gado M.A., Cheira M.F., Kinetics of Uranium and Iron Dissolution by Sulfuric Acid from Abu Zeneima Ferruginous Siltstone, Southwestern Sinai, Egypt, Euro-Mediterranean Journal for Environmental Integration, 3(1):  -    (2018).
[48] Wang H.L., Hao Q.L., Yang X.J., Lu L.D., Wang X., Graphene Oxide Doped Polyaniline for Supercapacitors, Electrochem Communicable, 11: 1158-1161 (2009).
[49] Langmuir, The Constitution and Fundamental Properties of Solids and Liquids, J. Am. Chem. Soc., 38: 2221–2295 (1916).
[50] Ma G., Aa A., Sa Z., Synthesis of Amino Magnetic Titano-Silicate and Its Role for Uranium Adsorption, Advances in Recycling & Waste Management, 02(03): 2-4 (2017).
[51] Gado M.A., Morsy A., Preparation of Poly-Aniline–Magnetic Porous Carbon Composite for Using as Uranium Adsorbent, Am. J. Mater. Synth. Process, 2: 32–40 (2017)
[52] Freundlich M.F., Uber Die Adsorption in Lasungen, Z. Phys.Chem., 57: 385–470 (1906).
[53] Amer T.E., El-Sheikh E.M., Gado M.A., Abu-Khoziem H.A., Zaki S.A., Selective Recovery of Lanthanides, Uranium and Thorium From Rosetta Monazite Mineral Concentrate, Separation Science and Technology, 53(10): 1522–1530 (2017).
[54] Genc-Fuhrman H., Tjell J., Mcconchie D., Adsorption of Arsenic from Water Using Activated Neutralized Red Mud, Environ. Sci. Technol., 38: 2428 (2004).
[55] Wang X., Lu J., Xing B., Sorption of Organic Contaminants by Carbon Nanotubes: Influence of Adsorbed Organic Matter, Environ. Sci. Technol., 42: 3207 (2008).
[56] Shapiro L., Rapid Analysis of Silicate, Carbonate and Phosphate Rocks, U. S. Geol. Surv.Bull., 1401:
70-76 (1975).