A Hybrid Membrane-Absorption Process for Carbon Dioxide Capture: Effect of Different Alkanolamine on Energy Consumption

Document Type : Research Article

Authors

1 Department of Chemical and Petrochemical Engineering, College of Engineering and Architecture, University of Nizwa, OMAN

2 Department of Chemical and Biochemical Engineering, AT-CERE, Technical University of Denmark, DENMARK

3 International Maritime College, OMAN

10.30492/ijcce.2019.35853

Abstract

Amine and membrane based process are commonly used to treat acid gases such as carbon dioxide and hydrogen sulfide. Carbon dioxide adversely affect the environment therefore, its utilization and storage are critical. In this work, a simplistic approach of single stage membrane unit combine with amine absorption processes with different commercial amines were investigated. Increase in CO2 concentration in the feed gas, results in substantial increase in the thermal energy consumption of the stripper reboiler, where using hybrid amine-membrane setup can effectively reduce energy consumed in reboiler. Both amine absorption process and membrane process are simulated using Aspen HYSYS V10. Since, membrane is not available in Aspen HYSYS V10 unit operation package, it is programmed and added as custom user operation. Moreover, a new acid/ amine based fluid package builds in combination of Peng-Robinson equation of state for vapor phase and electrolyte non-random two liquid based activity model for liquid phase were used in this study. Furthermore, energy consumption in CO2 capture using different alkanolamine such as N-methyldiethanolamine (MDEA), monethanolamine (MEA), deithanolamine (DEA), piperazine (PZ), triethanolamine (TEA) are also studied. As membrane unit help in CO2 reduction in feed to amine absorption process in hybrid amine-membrane setup. This significantly reduces the energy requirement as compared to the conventional standalone alkanolamine process. In comparison with various amines used in amine absorption process, MEA offers the lowest total energy consumed, whereas, MDEA considered to be the highest in terms of energy consumption.

Keywords

Main Subjects


[1] Baker R.W., Lokhandwala K., Natural Gas Processing With Membranes:  An Overview, Ind. Eng. Chem. Res., 47: 2109-2121(2008).
[3] Safari M., Ghanizadeh A., Montazer-Rahmati M.M., Optimization of Membrane-Based CO2-Removal from Natural Gas Using Simple Models Considering Both Pressure and Temperature Effects, J. Nat. Gas Sci Eng., 3, 3-10 (2009).
[5] Ahmad K.K.L.A.A.M.S. F., Removal of CO2 from Natural Gas Using Membrane Separation System: Modeling and Process Design, J. Appl. Sci., 10: 1134-1139(2010).
[6] Mckee R.L., Changela M.K., Reading G.J., CO2 Removal: Membrane Plus Amine, Hydrocarbon Processing, 70: 63-65 (1991).
[7] Rochelle G.T., Amine Scrubbing for CO2 Capture., Science, 325(5948): 1652-1654 (2009).
[8] Oyenekan B.A., Rochelle G.T., Energy Performance of Stripper Configurations for CO2 Capture by Aqueous Amines, Ind. Eng. Chem. Res., 45: 2457-2464 (2006).
[9] Chen S., Pan Z., Gas Pressurized Separation Column and Process to Generate a High Pressure Product Gas, in: “Carbon Capture Scientific”, LLC, Pittsburgh, PA (US) Pp. 1-10, (2013).
[10] Merkel T.C., Lin H., Wei X., Baker R., Power Plant Post-Combustion Carbon Dioxide Capture: an Opportunity for Membranes, J. Membr. Sci., 359: 126-139(2010).
[11] Merkel T.C., Wei X., He Z., White L.S., Wijmans J.G., Baker R.W., Selective Exhaust Gas Recycle with Membranes for CO2 Capture from Natural Gas Combined Cycle Power Plants, Ind. Eng. Chem. Res.,  52: 1150-1159 (2013).
[12] Ramasubramanian K., Verweij H., Winston Ho W.S., Membrane Processes for Carbon Capture from Coal-Fired Power Plant Flue Gas: a Modeling and Cost Study, J. Membr. Sci., 421-422: 299-310 (2012).
[13] Ramasubramanian K., Ho W.S.W., Recent Developments on Membranes for Post-Combustion Carbon Capture, Curr. Opin. Chem. Eng., 1: 47-54 (2011).
[14] Ebenezer S.A., “Removal of Carbon Dioxid from Natural Gas for LNG Production”, In, NTNU, Trondheim Norway (2005).
[15] Baker R.W., “Membrane Technology and Applications”, 2nd ed., John Wiley & Sons, Ltd, (2004).
[16] Ismail A., F, “Specialized Workshop on Membrane Gas Separation Technology”, Advanced Membrane Technology Research Centre, Malaysia (2009).
[17] Huang Y., Merkel T.C., Baker R.W., Pressure Ratio and its Impact on Membrane Gas Separation Processes, J. Membr. Sci.,  463: 33-40 (2014).
[18] C.A. Scholes, C.J. Anderson, R. Cuthbertson, G.W. Stevens, S.E. Kentish, Simulations of Membrane Gas Separation: Chemical Solvent Absorption Hybrid Plants for Pre- and Post-Combustion Carbon Capture, Sep. Sci. Technol.,  48: 1954-1962 (2013).
[20] Rousseau R.W., “Handbook of Separation Process Technology”, 1st ed., Wiley-Interscience, (1987).
[22] Geankoplis C.J., “Transport Processes and Unit Operations”, (1993).
[24] Mofarahi M., Khojasteh Y., Khaledi H., Farahnak A., Design of CO2 Absorption Plant For Recovery of CO2 from Flue Gases of Gas Turbine, Energy, 33: 1311-1319 (2008).
[25] Zhang Y., Chen H., Chen C.-C., Plaza J.M., Dugas R., Rochelle G.T., Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution, Ind. Eng. Chem. Res.,  48, 9233-9246(2009).
[26] Song Y., Chen C.-C., Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model, Ind. Eng. Chem. Res.,  48: 7788-7797(2009).
[27] Zhang Y., Chen C.-C., Thermodynamic Modeling for CO2 Absorption in Aqueous MDEA Solution with Electrolyte NRTL Model, Ind. Eng. Chem. Res., 50: 163-175 (2011).
[28] Tranchino L., Santarossa R., Carta F., Fabiani C., Bimbi L., Gas Separation in a Membrane Unit: Experimental Results and Theoretical Predictions, Sep. Sci. Technol.,  24: 1207-1226 (1989).
[29] Sidhoum M., Sengupta A., Sirkar K.K., Asymmetric Cellulose Acetate Hollow Fibers: Studies in Gas Permeation, Alche J., 34: 417-425 (1988).
[30] Sada E., Kumazawa H., Wang J.-S., Koizumi M., Separation of Carbon Dioxide by Asymmetric Hollow Fiber Membrane of Cellulose Triacetate, J. Appl. Polym. Sci., 45: 2181-2186(1992).
[31] Pan C.Y., Gas Separation by High-Flux, Asymmetric Hollow-Fiber Membrane, Alche J., 32: 2020-2027 (1986).
[32] Huttenhuis P.J.G., Agrawal N.J., Solbraa E., Versteeg G.F., The Solubility of Carbon Dioxide in Aqueous N-Methyldiethanolamine Solutions, Fluid Phase Equilib.,  264: 99-112 (2008).
[33] Suleman H., Maulud Abdulhalim S., Man Z., Review and Selection Criteria of Classical Thermodynamic Models for Acid Gas Absorption in Aqueous Alkanolamines, Rev. Chem. Eng., 31(6): 599- (2015).
[34] Jones J.H., Froning H.R., Claytor E.E., Solubility of Acidic Gases in Aqueous Monoethanolamine, J. Chem. Eng. Data.  4: 85-92 (1959).
[35] Lee J.I., Otto F.D., Mather A.E., The Solubility of H2S and CO2 in Aqueous Monoethanolamine Solutions, Can. J. Chem. Eng.  52: 803-805 (1974).
[36] Lee J.I., Otto F.D., Mather A.E., Equilibrium between Carbon Dioxide and Aqueous Monoethanolamine Solutions, J. Appl. Chem. Biotechnol.  26, 541-549 (1976).
[39] Isaacs E.E., Otto F.D., Mather A.E., Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in a Monoethanolamine Solution at Low Partial Pressures, J. Chem. Eng. Data.  25: 118-120 (1980).
[41] Dawodu O.F., Meisen A., Solubility of Carbon Dioxide in Aqueous Mixtures of Alkanolamines,
J. Chem. Eng. Data.  39: 548-552(1994).
[42] Jou F.-Y., Mather A.E., Otto F.D., The Solubility of CO2 in A 30 Mass Percent Monoethanolamine Solution, Can. J. Chem. Eng.,  73: 140-147(1995).
[43] S. Ma'mun, R. Nilsen, H.F. Svendsen, O. Juliussen, Solubility of Carbon Dioxide In 30 Mass % Monoethanolamine and 50 Mass % Methyldiethanolamine Solutions, J. Chem. Eng. Data., 50: 630-634 (2005).
[44] U.E. Aronu, S. Gondal, E.T. Hessen, T. Haug-Warberg, A. Hartono, K.A. Hoff, H.F. Svendsen, Solubility of CO2 In 15, 30, 45 and 60 Mass% MEA from 40 To 120°C and Model Representation Using the Extended UNIQUAC Framework, Chem. Eng. Sci.,  66: 6393-6406(2011)
[45] Tong D., Trusler J.P.M., Maitland G.C., Gibbins J., Fennell P.S., Solubility of Carbon Dioxide in Aqueous Solution of Monoethanolamine or 2-Amino-2-Methyl-1-Propanol: Experimental Measurements and Modelling, Int. J. Green. H Gas. Con., 6: 37-47(2012)
[46] Jou F.Y., Mather A.E., Otto F.D., Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Methyldiethanolamine Solutions, Ind. Eng. Chem. Process. Des. Dev., 21: 539-544 (1982).
[47] Chakma A., Meisen A., Solubility of Carbon Dioxide in Aqueous Methyldiethanolamine and N,N-Bis(Hydroxyethyl)Piperazine Solutions, Ind. Eng. Chem. Res., 26: 2461-2466(1987)
[48] R.J. Macgregor, A.E. Mather, Equilibrium Solubility of H2S and CO2 and Their Mixtures in a Mixed Solvent, Can. J. Chem. Eng., 69: 1357-1366(1991)
[49] Jou F.-Y., Carroll J.J., Mather A.E., Otto F.D., The Solubility of Carbon Dioxide and Hydrogen Sulfide in a 35 Wt% Aqueous Solution of Methyldiethanolamine, Can. J. Chem. Eng.,  71: 264-268 (1993).
[50] C. Mathonat, V. Majer, A.E. Mather, J.P.E. Grolier, Enthalpies of Absorption and Solubility of CO2 in Aqueous Solutions Of Methyldiethanolamine, Fluid Phase Equilib.,  140: 171-182 (1997).
[52] Lemoine B., Li Y.-G., Cadours R., Bouallou C., Richon D., Partial Vapor Pressure of CO2 and H2S over Aqueous Methyldiethanolamine Solutions, Fluid Phase Equilib., 172: 261-277 (2000).
[53] Park M.K., Sandall O.C., Solubility of Carbon Dioxide and Nitrous Oxide in 50 Mass Methyldiethanolamine, J. Chem. Eng. Data.  46: 166-168(2001)
[55] Sidi-Boumedine R., Horstmann S., Fischer K., Provost E., Fürst W., Gmehling J., Experimental Determination of Carbon Dioxide Solubility Data in Aqueous Alkanolamine Solutions, Fluid Phase Equilib.,  218: 85-94 (2004).
[56] Ermatchkov V., Pérez-Salado Kamps Á., Maurer G., Solubility of Carbon Dioxide in Aqueous Solutions of N-Methyldiethanolamine in the Low Gas Loading Region, Ind. Eng. Chem. Res.,  45: 6081-6091 (2006).
[57] Derks P.W.J., Hogendoorn J.A., Versteeg G.F., Experimental and Theoretical Study of the Solubility of Carbon Dioxide in Aqueous Blends of Piperazine and N-Methyldiethanolamine, The Journal of Chemical Thermodynamics.  42:151-163(2010).
[59] Lee J.I., Otto F.D., Mather A.E., Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at High Pressures, J. Chem. Eng. Data.  17: 465-468(1972).
[60] Lee J.I., Otto F.D., Mather A.E., Partial Pressures of Hydrogen Sulfide over Diethanolamine Solutions,
J. Chem. Eng. Data.  18: 420-420(1973).
[61] Kennard M.L., Meisen A., Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at Elevated Temperatures And Pressures, J. Chem. Eng. Data., 29: 309-312 (1984).
[62] Lal D., Otto F.D., Mather A.E., The Solubility of H2S and CO2 in a Diethanolamine Solution at Low Partial Pressures, Can. J. Chem. Eng., 63: 681-685 (1985).
[63] Rogers W.J., Bullin J.A., Davison R.R., FTIR Measurements of Acid-Gas–Methyldiethanolamine Systems, Aiche. J., 44:2423-2430 (1998).
[64] Seo D.-J., Hong W.-H., Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and 2-Amino-2-Methyl-1-Propanol, J. Chem. Eng. Data., 41: 258-260 (1996).
[65] Youngeun T.K., Lim J.A., Yeoil T.Y., Sungchan T.N., Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions, Bull. Korean Chem. Soc., 34: 783-787 (2013).