Electrocatalytic Oxidation Study of Theophylline on a Copper Nanoparticles-Modified, Carbon Paste Electrode Based on Cyclic Voltammetry

Document Type: Research Article

Authors

1 Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Depertment of Chemistry, Lahijan Branch, Islamic Azad University, Lahijan, I.R. IRAN

3 Depertment of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, I.R. IRAN

10.30492/ijcce.2019.35445

Abstract

In this study, the Cu nanoparticles were prepared by reducing CuSO4. These particles were used in making copper nanoparticles modified carbon paste electrode (nano-CPE). The electrochemical characteristics of this electrode (nano-CPE) were investigated. The results of the electrocatalytic oxidation of theophylline (TP) on nano-CPE, using the cyclic voltammetry technique showed that nano-CPE, has more reactivity and more effective surface area, as compared to the unmodified carbon paste electrode (un-CPE). The investigation of voltammograms obtained from oxidation of TP at different scan rates on the nano-CPE confirmed a cyclic mediated redox mechanism followed by reducing Cu(III) which is a chemical reaction (EC mechanism). These species formed in more positive potentials and act as a redox intermediate for TP oxidation. There was a linear relationship between the oxidation peak current and the square root of the scan rate, showing that the oxidation reaction of TP at nano-CPE might be due to the diffusion-controlled process.

Keywords

Main Subjects


[1] Malode S.J., Shetti N.P., Nandibewoor S.T., Voltammetric Behavior of Theophylline and Its Determination at Multi-Wall Carbon Nanotube Paste Electrode, Colloids and Surfaces B: Biointerfaces, 97: 1-6 (2012).
[2]  Zi L., Li J., Mao Y., Yang R., Qu L., High Sensitive Determination of Theophylline Based on Gold Nanoparticles/L- Cysteeine/Graphen/Nafion Modified Electrode, Electrochimica Acta, 78: 434-439 (2012).
[3] Alizadeh T., Ganjali M. R., Zare M., Norouzi P., Development of a Voltammetric Sensor Based on
a Molecularly Imprinted Polymer (MIP) for Caffeine Measurement
, Electrochim. Acta, 55: 1568-1574 (2010).
[5] Riahi S., Mousavi M. F., Bathaie S. Z., Shamsipur M., A Novel Potentiometric Sensor for Selective Determination of Theophylline: Theoretical and Practical Investigation, Anal. Chim. Acta, 548: 192-198 (2005).
[7] Ferapontova E.E., Eva M.O., An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum, J. Am. Chem. Soc., 130: 4256-4258 (2008).
[8] Igarashi T., Iwakawa S., Effect of Gender on Theophylline Clearance in the Asthmatic Acute Phase in Japanese Pediatric Patients, Biol. Pharm. Bull., 32: 304- 307 (2009).
[9] Ahn J.K., Park K.S., Won B. Y., Park H. G., A Novel Electrochemical Methode to Detect Theophylline Utilizing Silver Ion Captured Within Abasic Site-Incorporated Duplex DNA, Biosensors and Bioelectronics, 67: 590-594 (2015).
[11] Heatherley S.V., Hayward R.C., Seers H.E., Rogers P.J., Cognitive and Psychomotor Performance, Mood and Pressor Effects of Caffeine after 4, 6, and 8 h Caffeine Abstinence, Psychopharmacology, 178: 461-470 (2005).
[12]  Al-Faris N. A., Emirates J., Assessment of Intake of Caffeine in Random Population in Riyadh and
its Levels in some Food by HPLC
, Food Agric., 21: 21-31 (2009).
[13] Ichikawa K., Wada T., Nishihara T., Tsuji M., Mori A., Yokohama F., Hasegawa D., Kawamoto K., Tanakaya M., Katyama Y., Sakuragi S., Ito H., A Case of Life-Threatening Supraventricular Tachycardia Storm Associated With Theophylline Toxicity, J. Cardiol. Cases, 15: 125-128 (2017).
[14] Hector C.G., Alejandro C.O., Arsenio M.P., Determination of Theophylline in Blood Serum by UV Spectrophotometry and Partial Least-Squares (PLS-1) Calibration, Anal. Chim. Acta, 384: 95- 103 (1999).
[16] Srdjenovic B., Djordjevic-Milic V., Grujic N., Injac R., Lepojevic Z., Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal ProductsJ. Chromatogr. Sci., 46: 144- 149 (2008).
[17] Wentao B.; Kyung H. R., Comparison of Different Silica-Based Imidazolium Stationary Phases for LC in Separation of Alkaloids, Chromatographia, 71: 25-30 (2010).
[18] Chavez J.L., Lyon W., Kelley-Loughnane N., Stone M.O., Theophylline Detection Using an Aptamer and DNA-Gold Nanoparticle Conjugates, Biosens. Bioelectron., 26: 23 -28 (2010).
[19] Garcinuno R. M., Fernandez P., Perez-conde C., Gutierrez A. M., Camara C., Development of a Fluoroimmunosensor for Theophylline Using Immobilised Antibody, Talanta, 52: 825- 832 (2000).
[20] Alizadeh M., Ghahramani E., Zarrabi M., Hashemi S., Efficient De-Colorization of Methylene Blue by Electro-coagulation Method: Comparison of Iron and Aluminum Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 39-47 (2015).
[21] El-Hallag I.S., El-Mossalamy E.H., Asiri A.M., Electrochemical Investigation of Antibacterial Laser Dye Compound in 1,2-Dichloroethane at a Platinum Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 31(3): 9-18 (2012).
[22] Akvan F., Neshati J., Mofidi J., An Electrochemical Measurement for Evaluating the Cathodic Disbondment of Buried Pipeline Coatings Under Cathodic Protection, Iran. J. Chem. Chem. Eng. (IJCCE), 34(2):83-91 (2015).
[23] Gupta V.K., Ganjali M.R., Norouzi P., Khani H., Nayak A., Agarwal S., Electrochemical Analysis of Some Toxic Metals Ion-Selective Electrodes, Critical Reviews in Analytical Chemistry, 41: 282-313 (2011).
[24] Gupta V.K., Mergu N., Kumawat L.K., Singh A.K., Selective Naked-Eye Detection of Magnesium(II) Ions Using a Coumarin-Derived Fluorescent Probe, Sensors and Actuators B, (2014).
[25] Ashrafi A. M., Mustakeem M., David N., Study the Transport Properties of Anion and Cation Echange Membranes toward Various Ions Using Chronopotentiometry, Iran. J. Chem. Chem. Eng.  (IJCCE), 36(2): 81-87 (2017).
[26] Sadeghi B., Sarraf-Mamoory R., Shahverdi H. R., The Effect of LiFePO4 Coating on Electrochemical Performance of LiMn2O4 Cathode Material, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 29-33 (2012).
[28] Prakash S., Chakrabarty T., Singh A.K., Shahi V.K., Polymer Thin Films Embedded With Metal Nanoparticles for Electrochemical Biosensors Applications, Biosensors and Bioelectronics, 41: 43-53 (2013).
[29] Wang Y., Huang B., Dai W., Ye J., Xu B., Sensitive Determination of Capsaicin on Ag/Ag2O Nanoparticles/Reduced Graphene Oxide Modified Screen-Printed Electrode, Journal of Analytical Chemistry, 776: 93- 100 (2016).
[30] Kumar M., Swamy B. E. K., Role of Heat on the Development of Electrochemical Sensors on Bare and Modified Co3O4/CuO Composite Nanopowder Carbon Paste Electrodes, Materials Science and Engineering C, 58: 142-152 (2016).
[31] Gholivand M.B., Malekzadeh G., Derakhshan A.A., Boehmite Nanoparticles Modified Carbon Paste Electrode for Determination of Piroxicam, Sensors and Actuators B, 201: 378- 386 (2014).
[33] Kalambate P. K., Rawool C. R., Karna S. P., Srivastava A. K., Highly Sensitive and Selective Determination of Methylergometrine Maleate Using Carbon Nanofibers/Silver Nanoparticles Composite Modified Carbon Paste Electrode, Materials Science and Engineering C, 69: 453 -461 (2016).
[34] Ojani R., Raoof J., Ebrahimi M., A Cyclic Voltammetric Study of the Aqueous Electrochemistry of Some Anthraquinone Derivatives on Carbon Paste Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 20(2): 75-81 (2001).
[35] Vitras K., Svancara I., Metelka R., J., Carbon Paste Electrodes in Electroanalytical Chemistry, Serb. Chem. Soc., 74 (10): 1021 – 1033 (2009).
[36] Lindquist J., Carbon Paste Electrode With a Wide Anodic Potential Range, Anal. Chem., 45(6): 1006-1008 (1973).
[37] Apetrei C., Apetrei I. M., Saja J. A. D., Rodriguez-Mendez M. L., Carbon Paste Electrode Made from Different Carbonaceous Materials: Application in the Study of Antioxidants, Sensors, 11: 1328-1344 (2011).
[39] Darroudi A., Eshghi H., Rezaeian S., Chamsaz M., Bakavoli M., Haghbeen K., Hosseiny A., A Novel Carbon Paste Electrode for Potentiometric Determination of Vanadyl Ion, Iran. J. Chem. Chem. Eng. (IJCCE), 34(4): 89-96 (2015).
[40] Gupta V.K., Karimi-Maleh H., Sadegh R., Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Waste Water Samples Using a Voltammetric Nanosensor, Int. J. Electrochem. Sci., 10: 303-316 (2015).
[42] Karimi-Maleh H., Tahernejad-Javazmi F., Atar N., Yola M. L., Gupta V. N., Ensafi A.A., A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Poly Pyrrole/Functionalized Multi Walled Carbon Nanotubes for Determination of 6-Mercaptopurine Anti Cancer Drug, Ind. Eng. Chem. Res., 54: 3634-3639 (2015).
[43] Song Y., Zhang X., Yang S., Wei X., Sun Z., Electrocatalytic Performance for Methanol Oxidation on Nanoporous Pd/NiO Composite Prepared by One- Step Dealloying, Fuel, 181: 269 – 276 (2016).
[44] Habibi B., Ghaderi S., Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 99-112 (2016).
[45] Yola M.L., Gapta V.K., Eren T., Sen A.E., Atar N., A Novel Electro Analytical Nanosensor Based on Graphene Oxide/Silver Nanoparticles for Simultaneous Determination of Quercetin and Morin, Electrochimica Acta, 120: 204-211 (2014).
[46] Gapta V. K., Karimi-Maleh H., Sadegh R., Simultaneous Determination of Hydroxylamine, Phenol and Sulfite in Water and Wast Water Samples Using a Voltammetric Nanosensor, Int. J. Electrochem. Sci., 10: 303-316 (2015).
[47] Foroughi F., Rahsepar M., Hadianfard M. J., Kim H., Facile Synthesis and Electrochemical Performance of Graphene-Modified Cu2O Nanocomposite for Use in Enzyme-Free Glucose Biosensor, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2):1-10 (2018).
[48] Raoof J., Zabihi M. S., Hosseini S. R., Sohrabi M. R., Electro-Catalytic Oxidation of Methanol at Ni(OH)2 Nanoparticles-Poly(O-Anisidine)/Triton X-100 Film onto Phosphotungstic Acid-Modified Carbon Paste Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 38(2): 37-48 (2019).
[49] Mazloum-Ardakani M., Rajabi H., Beitollahi H., Mirjalili B. B. F., Akbari A., Taghavinia N., Voltammetric Determination of Dopamine at the Surface of TiO2 Nanoparticles Modified Carbon Paste Electrode, Int. J. Electrochem. Sci., 5: 147- 157 (2010).
[50] Behara D. K., Palukuru P. S., Devangam V. P., N,S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Volet Dye, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 169-177 (2020).
[51] Zhao Q., Wang J., Huang X., Yao Y., Zhang W., Shao L., Copper-Enriched Palladium-Copper Alloy Nanoparticles for Effective Electrochemical Formic Acid Oxidation, Electrochemistry Communications, 69: 55 -58 (2016).
[52] Srivastava S. K., Gupta V. K., Jain S., Determination of Lead Using a Poly( Vinyl Chloride)- Based Crown Ether Membrane, Analyst, 120: 495-498 (1995).
[53] Gupta V. K., Singh L. P., Singh R., Upadhyay N., Kaur S. P., Sethi B., A Novel Copper(II) Selective Sensor Based on Dimethyl 4,4ʹ (O-Phenylene) Bis (3-Thioallo Phanate) in PVC MatrixJournal of Molecular Liquids, 174: 11-16 (2012).
[54] Gupta V.K., Kumar S., Singh R., Singh L. P., Shoora S.K., Sethi B., Cadmium(II) Ion Sensing Through P-Tert-Butyl Calix[6] Arene Based Potentiometric Sensor, Journal of Molecular Liquids, 195: 65-68 (2014).
[55] Gupta K.V., Sethi B., Sharma R.A., Agarwal S., Bharti A., Mercury Selective Potentiometric Sensor Based on Low Rim Functionalized Thiacalix [4]-Arene As a Cationic Receptor, Journal of Molecular Liquids, 177: 114-118 (2013).
[56] Andrews E., Katla S., Kumar C., Patterson M., Sprunger P., Electrocatalytic Reduction of CO2 at Au Nanoparticles Electrodes: Effects of Interfacial Chemistry on Reduction Behavior, Journal of Electrochemical Society, 162(12): F1373- F1378 (2015).
[57] Chaturvedi S., Dave P.N., Shah N.K., Applications of Nano-Catalyst in New Era, Journal of Saudi Chemical Society, 16: 307-325 (2012).
[59] Wang H.B., Zhang H.D., Zhang Y.H., Chen H., Xu L.L., Huang K.J., Liu Y.M., Tungsten Disulfide Nano-Flower/Silver Nanoparticles Composites Based Electrochemical Sensor for Theophylline Determination, Journal of the Electrochemical Society, 162(7): B 173-B 179 (2015).
[62] Gao Y., Wang H., Gua L., Simultaneous Determination of Theophylline and Caffeine by Large Mesoporous Carbon/Nafion Modified Electrode, Journal of Electroanalytical Chemistry, 706: 7-12 (2013).
[64] Jafari M., Irankhah A., Mahmodizadeh M., Hoshyar N., Effect of Pt on Zn-Free Cu-Al Catalysts for Methanol Steam Reforming to Produce Hydrogen, Iran. J. Chem. Chem. Eng. (IJCCE), 37(4): 93-100 (2018).
[65] Haley H., “High-Valent Copper Catalysis”, Chem. 535 Seminar, 6 December 2012.
[66] Luo J., Jiang S.,  Zhang H., Jiang J., Liu X., A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode, Analytica Chimica Acta, 709: 47- 53 (2012).
[67] Heli H., Hajjizadeh M., Jabbari A., Moosavi-Movahedi A.A., Copper Nanoparticles-Modified Carbon Paste Transducer as a Biosensor for Determination of Acetylcholine, Biosens Bioelectron, 24: 2328-2333 (2009).
[68] Nagashree K. L., Ahmed  M. F., Electrocatalytic Oxidation of Methanol on Cu-Modified Polyaniline-Electrode in Alkaline Medium, J. Appl. Electrochem., 39: 403-410 (2009).
[69] Heli H., Zarghan M., Jabbari A., Parsaei A. J., Electrocatalytic Oxidation of the Antiviral Drug Acyclovir on a Copper Nanoparticles-Modified Carbon Paste Electrode, Solid State Electrochem., 14: 787- 795 (2010).
[70] Suseelamma A., Raja K., Reddy K. H., Synthesis Chracterization, DNA Binding and Nuclease Activity of Cobalt(II) Complexes of Isonicotinoyl Hydrazones, Iran. J. Chem. Chem. Eng. (IJCCE), 37(4): 63-74 (2018).
[71] Bahrami Adeh N., Mohammadi N., Khorramjah F., Synthesis and Characterization of a Novel Nanoporous Composite Based on Elemental Sulfur and Graphitic Mesoporous Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 35(4): 1-9 (2016).
[73] Rezvani A.R., Hadadzadeh H., The Electrochemical and Spectroscopic Studies of trans-[Lco((DO)(DOH)pn)Lʹ] Complexes, Iran. J. Chem. Chem. Eng. (JICCE), 21(1): 21-27 (2002).
[74] Safavi A., Shams E., Electrochemical Investigation of Mo(VI)-MTB-ClO3- System in Phosphate
Buffer
, Iran. J. Chem. Chem. Eng. (IJCCE), 20(2): 96-101 (2001).
[75] Nematollahi D., Rahimi J., Hesari M., Hamzehloei A., Electrochemical Study of Iodide in the Presence
of 2-Thobarbituric Acid- Catalytic Detrmination of 2-Thiobarbituric Acid
, Iran. J. Chem. Chem. Eng. (IJCCE), 20(2): 90-95 (2001).
[76] Golabi S. M., Fazli M., Rastegar-Mirzaei Y., Electrochemical Behaviour of Nifedipine and Nitrendipine in Chloroform and Chloroform-Isopropanol Mixture, Iran. J. Chem. Chem. Eng. (IJCCE), 17(1): 21-28 (1998).
[77] Tavakolyanpoiur F., Vaqif Husain S., Rastegar M.H., Saber Tehrani M., Abroomand Azar P., Electrochemical Oxidation of Flavonoids and Interaction With DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 37(3): 117-125 (2018).
[78] Naddaf E., Abedi M. R., Zabihi M. S., Imani A., Electrocatalytic Oxidation of Ethanol and Ethylene Glycol onto Poly (O-Anisidine)-Nickel Composite Electrode, Iran. J. Chem. Chem. Eng. (IJCCE), 36(1): 59-70 (2017).
[79] Khanna P.K., Gaikwad S., Adhyapak P.V., Singh N., Marimuthu R., Synthesis and Characterization of Copper Nanoparticles, Materials Letters, 61: 4711- 4714 (2007).
[80] Wu S., Chen D., Synthesis of High- Concentration Cu Nanoparticles in Aqueous CTAB Solutions, Journal of Colloid and Interface Science, 273: 165- 169 (2004).
[83] Khouchaf A., Takky D., Chbihi M. E. M., Benmokhtar S., Electrocatalytic Oxidation of Methanol on Glassy Carbon Electrode Modified by Metal Ions (Copper and Nickel) Dispersed into Polyaniline Film, Journal of Materials Science and Chemical Engineering, 4: 97 -105 (2016).
[84] Miller B., Split-Ring Disk Study of the Anodic Processes at a Copper Electrode in Alkaline Solution, J. Electrochem. Soc., 116 (12): 1675 -1680 (1969).
[85] Miller J.C., Miller J.N., “Statistics for Aanalytical Chemistry”, Ellis Harwood, New York, (1994).
[86] Hajjizadeh M., Jabbari A., Heli H., Moosavi-Movahedi A.A., Electro-Oxidation and Determination of Mefenamic Acid and Indomethacin on a Copper Electrode, Chem. Anal., 53: 429 -444 (2008).
[87] Heli H., Hajjizadeh M., Jabbari A., Moosavi-Movahedi A.A., Fine Steps of Electrocatalytic Oxidation an Sensitive Determination of Some Amino Acids on Copper Nanoparticles, Anal. Biochem., 388: 81 -90 (2009).
[88] Maleki A., Nematollahi D., Mechanism Diversity in Anodic Oxidation of N.N-Dimethyl-p-Phenylene-Diamine by Varying pH, Journal of Electroanalytical Chemistry, 704: 75-79 (2013).
[89] Khan R., Ahmad R., Rai P., Jang L.W., Yun J.H., Yu Y.T., Glucose-Assisted Synthesis of Cu2O Shuriken-Like Nanostructures and Their Application as Nonenzymatic Glucose Biosensors, Sensors and Actuators B, 203: 471-476 (2014). 
[90] Farghali O., Mohamed N., Voltammetric Determination of Azithromycin at the Carbon Paste Electrode, Talanta, 62: 531- 538 (2004).