The Crystallographic, Spectroscopic and Theoretical Studies on (E)-2-[((4-fluorophenyl)imino)methyl]-4-nitrophenol and (E)-2-[((3-fluorophenyl)imino)methyl]-4-nitrophenol Compounds

Document Type: Research Article

Authors

1 Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, TURKEY

2 Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, TURKEY

Abstract

In this study, two new salicylideneaniline derivative compounds which are an isomer of each other have been synthesized and characterized by X-Ray Diffraction (XRD) technique, IR spectroscopy, and theoretical method. While (E)-4-(dihydroxyamino)-2-(((4-fluorophenyl)imino) methyl)phenol (1), crystalizes triclinic P-1 space group, (E)-4-(dihydroxyamino)-2-(((3-fluorophenyl)imino)methyl)phenol (2) crystalizes monoclinic P21/c space group. Both of the molecules which adopt (E) configuration with respect to the central C=N bond have strong intermolecular O―H∙∙∙N hydrogen bonds. These O―H∙∙∙N hydrogen bonds create S(6) motifs according to graph set notation. The optimized geometries of the molecules have been calculated by using Density Functional Theory (DFT) with the 6-31G(d,p) basis set. Molecular Electrostatic Potential (MEP) map and Frontier Molecular Orbitals have been made for the optimized geometries. In addition to these studies, the theoretical IR spectra of the compounds, the experimental IR spectra of which have been recorded at 4000-400 cm-1 interval, have also been calculated with same level theory. The experimental and theoretical results were compared to each other.

Keywords

Main Subjects


[1] Hadjoudis E., Vittorakis M., Moustakali-Mavridis I., Photochromism and Thermochromism of Schiff Bases in the Solid State and in Rigid Glasses, Tetrahedron, 43: 1345-1360 (1987).

[2] Ohshima A., Momotake A., Arai T., Photochromism, Thermochromism, and Solvatochromism of Naphthalene-Based Analogues of Salicylideneaniline in Solution, J. Photoch. Photobio. A, 162: 473-479 (2004).

[3] Cohen M. D., Schmidt G. M. J., Photochromy and Termochromy of Anils1, J. Phys. Chem., 66: 2442-2446 (1962).

[4] Bouas-Laurent H., Dürr H., Organic Photochromism, Pure Appl. Chem., 73:639-665 (2001).

[5] Elmali A., Elerman Y., Zeyrek C. T., Conformational Sudy and Structure of N-(2,5-methylphenyl) Salicylaldimine, J. Mol. Struct., 443: 123-130 (1998).

[6] Brown G.H., “Photochromism, Techniques of Chemistry”, Vol. III, Wiley-Interscience, New York (1971).

[7] Dürr H., Bouas-Laurent H., “Photochromism: Molecules and Systems, Elsevier”, Amsterdam (1990).

[8] Tayyari S. F., Zeegers-Huyskens Th., Wood J. L., Spectroscopic Study of Hydrogen Bonding in the Enol form of β-diketones—II. Symmetry of the Hydrogen Bond, Spectrochim. Acta A 35:1289-1295 (1979).

[9] Ogawa K., Harada J., Fujiwara T., Yoshida S., Thermochromism of Salicylideneanilines in Solution: Aggregation-controlled Proton Tautomerization, J. Phys. Chem. A 105: 3425-3427 (2001).

[10] Ameer-Beg S., Ormson S.M., Brown R.G., Matousek P., Towrie M., Nibbering E.T.J., Foggi P., Neuwahl F. V. R., Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT)
in Room Temperature Solutions of 3-Hydroxyflavone and Derivatives
, J. Phys. Chem. A 105: 3709-3718 (2001).

[11] Sliwa M., Mouton N., Ruckebusch C., Aloïse S., Poizat O., Buntinx G., Métivier R., Nakatani K., Masuhara H., Asahi T., Comparative Investigation of Ultrafast Photoinduced Processes in Salicylidene-Aminopyridine in Solution and Solid State, J. Phys. Chem., C 113: 11959-11968 (2009).

[13] Harada J., Fujiwara T., Ogawa K., Crucial Role of Fluorescence in the Solid-State Thermochromism of Salicylideneanilines, J. Am. Chem. Soc., 129: 16216-16221 (2007).

[15] Destro R., Gavezzotti A., Simonetta M., Salicylideneaniline, Acta Cryst., B34: 2867-2869 (1978).

[16] Isse A. A., Abdurrahman A. M., Vianello E., Role of Proton Transfer in the Electrochemical Reduction Mechanism of Salicylideneaniline, J. Electroanal. Chem., 431: 249-255 (1997).

[17] Ito E., Oji H., Araki T., Oichi K., Ishii H., Ouchi Y., Ohta T., Kosugi N., Maruyama Y., Naito T., Inabe T., Seki K., Soft X-ray Absorption and X-ray Photoelectron Spectroscopic Study of Tautomerism in Intramolecular Hydrogen Bonds of N-Salicylideneaniline Derivatives, J. Am. Chem. Soc., 119: 6336-6344 (1997).

[18] Sekikawa T., Kobayashi T., Inabe T., Femtosecond Fluorescence Study of the Substitution Effect on the Proton Transfer in Thermochromic Salicylideneaniline Crystals, J. Phys. Chem. A, 101:644-649 (1997). 

[19] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr, Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03, Revision E.01., Gaussian, Inc., Pittsburgh (2004).

[20] Irikura K. K., Johnson III R. D., Kacker R. N., Uncertainties in Scaling Factors for ab Initio Vibrational Frequencies, J. Phys. Chem., A 109: 8430-8437 (2005).

[21] Frisch A., Dennington II R., Keith T., Millam J., Nielsen A. B., Holder A. J., Hiscocks J., GaussView Reference Version 40, Gaussian Inc., Pittsburgh (2007).

[22] Stoe & Cie, X-AREA (Version 1.18) and Stoe & Cie, X-RED32 (Version 1.04), Darmstadt, Germany (2002).

[23] Sheldrick G. M., A Short History of SHELX, Acta Crystallogr., A64: 112-122 (2008).

[24] Farrugia L. J., ORTEP-3 for Windows-A Version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Cryst., 30: 565-565 (1997).

[25] Farrugia L.J., WinGX Suite for Small-Molecule Single-Crystal Crystallography, J. Appl. Cryst., 32: 837-838 (1999).

[26] Spek A. L., Single-Crystal Structure Validation with the Program PLATON, J. Appl. Cryst., 36:7-13 (2003).

[27] Alaman Ağar A., Tanak H., Yavuz M., Experimental and Quantum Chemical Calculational studies on 2-[(4-propylphenylimino)methyl]-4-nitrophenol, Mol. Phys., 108: 1759-1772 (2010).

[28] Kılıç I., Ağar E., Erşahin F., Işık Ş., 2-[(4-Methoxyphenyl)iminomethyl]-4-nitrophenol, Acta Crystallogr., E65: o737 (2009).

[29] Valkonen A., Kolehmainen E., Grzegórska A., Ośmiałowski B., Gawinecki R., Rissanen K., Two (E)-2-({[4-(dialkylamino)phenyl]-imino}methyl)-4-Nitrophenols, Acta Crystallogr., C68: o279-o282 (2012).

[30] Tan Y.-H., Teoh S. G., Loh W.-S., Fun H.-K., 4- [(2-Hydroxy-5-nitrobenzylidene)-amino] benzenesulfonamide, Acta Crystallogr., E66: o2610-o2611 (2010).

[31] Özdemir Tarı G., Ceylan U., Macit M., Isık Ş., (E)-2-[(4-Iodophenyl)iminomethyl]-6-methylphenol, Acta Crystallogr., E66:o1568 (2010).