Chemical Absorption of Carbon Dioxide into Aqueous Piperazine Solutions Using a Stirred Reactor

Document Type : Research Article

Authors

1 Department of Applied Chemistry, North Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 School of Chemical, Petroleum and Gas Engineering, University of Science and Technology, Tehran, I.R. IRAN

3 Department of Applied Chemistry, Islamic Azad University, North Tehran Branch, Tehran, I.R. IRAN

Abstract

In this work, the absorption of CO2 using aqueous piperazine (PZ) solution have been investigated both experimentally and theoretically. The absorption experiments were carried out in a stirred batch contactor with two flat blades. The experimental data are obtained over the temperature range of 298–338 K and for the PZ concentration, CO2 partial pressure, and the stirrer speed in the range of 0.5–1.5 kmol/m3, 2.5-7.5 bar, and 0-300 rpm, respectively. The influences of each variable upon the absorption flux, removal efficiency, and loading of CO2 have been investigated. In addition, a model based on chemical equilibrium in the liquid phase is employed to evaluate the concentration of chemical species in the liquid phase. Evidence suggests that CO2 absorption flux, removal efficiency, and the loading increase with decreasing the temperature and increasing the stirrer speed. When PZ concentration is increased, the absorption flux and removal efficiency increase and CO2 loading reduce. Also by increasing PZ concentration from 0.5 to 1.5 M at a temperature of 388 K, absorption efficiency is increased from 70 % to 95 %. CO2 absorption flux was decreased from about 0.0175 to 0.01 mol/m2 s when CO2 loading was increased from 0.32 to 0.51.

Keywords

Main Subjects


[1] Hajilary N., Shahi A., Rezakazemi M., Evaluation of Socio-Economic Factors on CO2 Emissions in Iran: Factorial Design and Multivariable Methods,
J. Cleaner Prod., 189: 108-115 (2018).
[2] Mc Glade C., Ekins P., The Geographical Distribution of Fossil Fuels Unused When Limiting GlobalNature, 517: 187–190 (2015).
[5] Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M. M., Ismail A. F., Matsuura T., State-of-the-Art Membrane Based CO2 Separation Using Mixed Matrix Membranes (MMMS): an Overview on Current Status and Future Directions, Prog. Polymer Sci., 39(5): 817-861 (2014).
[7] Pashaei H., Ghaemi A., Nasiri M., Heydarifard M.,   Experimental Investigation of the Effect of Nano Heavy Metal Oxide Particles in Piperazine Solution on CO2 Absorption Using a Stirrer Bubble ColumnEnergy Fuels, 32(2): 2037–2052 (2018).
[8]    Johnsson F., Kjärstad J., Odenberger M.,  The Importance of CO2 Capture and Storage:
A Geopolitical Discussion
Thermal Sci., 16(3): 655-668 (2012).
[9] Pereira L. M.C., Vega L. F.,  A Systematic Approach for the Thermodynamic Modelling of CO2-Amine Absorption Process Using Molecular-Based ModelAppl. Energy, 232: 273–291 (2018).
[10] Ghaemi A., Shahhosseini Sh., Ghannadi M., Experimental Investigation of Reactive Absorption of Ammonia and Carbon Dioxide by Carbonated Ammonia Solution, Iran. J. Chem. Chem. Eng. (IJCCE),  30(2): 43-50 (2011).
[11] Karbalaei N., Ghaemi A., Tahvildari K., Mehrdad Sharif A.A., Experimental Investigation and Modeling of CO2 Adsorption Using Modified Activated Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 177-192 (2020). DOI: 10.30492.ijcce202037648
[12] Rezakazemi M. Shirazian S., Lignin-Chitosan Blend for Methylene Blue Removal: Adsorption ModelingJ. Molecular Liq., 274: 778-791 (2019).
[13] Sodeifian G., Raji M., Asghari M., Rezakazemi M., Dashti A., Polyurethane-SAPO-34 Mixed Matrix Membrane for CO2/CH4 and CO2/N2 Separation, Chinese J. Chem. Eng., 4: 10-20 (2018).
[13] Mesbah M., Shahsavari S., Soroush E., Rahaei N., Rezakazemi M., Accurate Prediction of Miscibility of CO2 and Supercritical CO2 in Ionic Liquids Using Machine Learning, J. CO2 Utilization, 25: 99-107 (2018).
[14] Razavi S. M. R., Rezakazemi M., Albadarin A. B., Shirazian S., Simulation of CO2 Absorption by Solution of Ammonium Ionic Liquid in Hollow-Fiber Contactors, Chem. Eng. Processing: Process Intensification, 108: 27-34 (2016).
[15] Zhang Z., Chen F., Rezakazemi M., Zhange W., Lua C., Chang H., Quana X.,  Modeling of a CO2-Piperazine-Membrane Absorption SystemChem. Eng. Res. Design, 131: 375–384 (2018).
[17] Yu iX., An L., Yang J., Tu S.T., Yan J.,  CO2 Capture Using a Superhydrophobic Ceramic Membrane ContactorJ. Membrane Sci., 496: 1-12 (2015).
[18] Quan S., Li S. W., Xiao Y. C., Shao L., CO2-Selective Mixed Matrix Membranes (Mmms) Containing Graphene Oxide (GO) For Enhancing Sustainable CO2 CaptureInt. J. Greenhouse Gas Control, 56,  22-29 (2017).
[19] Geyer F., Schönecker C., Butt H.‐J., Vollmer D., Enhancing CO2 Capture Using Robust Superomniphobic Membranes, Adv. Materials, 29(5): 1603524 (2017).
[20] Rochelle G. T.,  Amine Scrubbing For CO2 CaptureSci., 325(5948): 1652-1654 (2009).
[21] Shirazian S., Marjani A., Rezakazemi M., Separation of CO2 By Single and Mixed Aqueous Amine Solvents in Membrane Contactors: Fluid Flow and Mass Transfer Modeling, Eng. with Comput., 28(2):189-198 (2011).
[23] Ghiasi M.M., Abedi‐Farizhendi S., Mohammad A.H., Modeling Equilibrium Systems of Amine‐Based CO2 Capture by Implementing Machine Learning Approaches, Environ. Process Sustainable Energy, https://doi.org/10.1002/ep.13160 (2019).
[24] Mazari S. A., Ali B. S., Jan B. M., Saeed I. M., Thermal Degradation of Piperazine and Diethanolamine Blend for CO2 CaptureInt. J. Greenhouse Gas Control, 47: 1-7 (2016).
[25] Sun W. C., Yong C. B., Li M. H.,  Kinetics of the Absorption of Carbon Dioxide Into Mixed Aqueous Solutions of 2-Amino-2-Methyl-L-Propanol and PiperazineChem. Eng. Sci., 60(2): 503-516 (2005).
[26] Norouzbahari S., Shahhosseini S., Ghaemi A.,  Modeling of CO2 Loading in Aqueous Solutions of Piperazine: Application of an Enhanced Artificial Neural Network AlgorithmJ. Natural Gas Sci. Eng., 24, 18-25 (2015).
[27] Nwaoha C., Saiwan C., Tontiwachwuthikul P., Supap T., Rongwong W., Idem R., AL-Marri M., Benamor A., Carbon Dioxide (CO2) Capture: Absorption-Desorption Capabilities of 2-Amino-2-Methyl-1-Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) Tri-Solvent BlendsJ. Natural Gas Sci. Eng., 33, 742-750 (2016).
[28] Freeman S. A., Dugas R., Van Wagener D. H., Nguyen T., Rochelle G. T.,  Carbon Dioxide Capture with Concentrated, Aqueous PiperazineInt. J. Greenhouse Gas Control, 4(2): 119-124 (2010).
[29] Mirzaei F., Ghaemi A., An Experimental Correlation for Mass Transfer Flux of CO2 Reactive Absorption into Aqueous MEA‐PZ Blended Solution, Asia-Pacific J.. Chem. Eng., 13(6):   -   (2018).
[30] Tan C.-S. Chen J.-E.,  Absorption of Carbon Dioxide with Piperazine and Its Mixtures in a Rotating Packed BedSep. Pur. Technol., 49(2): 174-180 (2006).
[31] Lu J.-G., Fan F., Liu C., Zhang H., Ji Y., and Chen M.-d.,  Density, Viscosity, And Surface Tension
of Aqueous Solutions of Potassium Glycinate+ Piperazine in the Range of (288.15 To 323.15) K
,
 J. Chem. Eng. Data, 56(5): 2706-2709 (2011).
[32] Bishnoi S., Rochelle G. T., Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility, Chem. Eng. Sci., 55(22): 5531-5543 (2000).
[33] Derks P., Kleingeld T., Van Aken C., Hogendoorn J., Versteeg G.,  Kinetics of Absorption of Carbon Dioxide in Aqueous Piperazine SolutionsChem. Eng. Sci., 61(20): 6837-6854 (2006).
[34] Dugas R. Rochelle G.,  Absorption And Desorption Rates of Carbon Dioxide with Monoethanolamine and PiperazineEnergy Procedia, 1(1): 1163-1169 (2009).
[35] Norouzbahari S., Shahhosseini S., Ghaemi A., CO2 Chemical Absorption into Aqueous Solutions of Piperazine: Modeling of Kinetics and Mass Transfer RateJ. Natural Gas Sci. Eng., 26: 1059-1067 (2015).
[36] Pashaei H., Ghaemi A., Nasiri M., Experimental Investigation of CO2 Removal Using Piperazine Solution in a Stirrer Bubble Column, Int. J. Greenhouse Gas Control, 63: 226-240 (2017).
[37] Bougie F. Iliuta M. C., CO2 Absorption in Aqueous Piperazine Solutions: Experimental Study and Modeling, J. Chem. Eng. Data, 56 (4): 1547-1554 (2011).
[38] Patterson C., Slocum G., Busey R., Mesmer R.,  Carbonate Equilibria in Hydrothermal Systems: First Ionization of Carbonic Acid in NaCl Media to 300 CGeochimica et Cosmochimica Acta, 46(9): 1653-1663 (1982).
[39] Patterson C., Busey R., Mesmer R.,  Second Ionization of Carbonic Acid in NaCl Media To 250 CJ. Sol. Chem., 13(9): 647-661 (1984).
[40] Edwards T., Maurer G., Newman J., Prausnitz J.,  Vapor‐Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak ElectrolytesAIChE J., 24(6): 966-976 (1978).
[41] Hetzer H. B., Robinson R., Bates R. G.,  Dissociation Constants of Piperazinium Ion and Related Thermodynamic Quantities from 0 to 50. Deg, J. Phys. Chem., 72 (6): 2081-2086 (1968).
[42] Ermatchkov V., Kamps Á. P.-S., Maurer G.,  Chemical Equilibrium Constants For The Formation of Carbamates in (Carbon Dioxide+ Piperazine+ Water) From 1H-NMR-Spectroscopy, J. Chem. Thermo., 35 (8): 1277-1289 (2003).
[43] Moioli S., Pellegrini L. A., Modeling the Methyldiethanolamine-Piperazine Scrubbing System for CO2 Removal: Thermodynamic AnalysisFrontiers Chem. Sci. Eng., 10 (1): 162-175 (2016).
[44] Fang M., Zhou X., Xiang Q., Cai D., Luo Z.,   Kinetics of CO2 Absorption in Aqueous Potassium L-prolinate Solutions at Elevated Total PressureEnergy Procedia, 75: 2293-2298 (2015).
[45] Bandyopadhyay A., Amine Versus Ammonia Absorption of CO2 as a Measure of Reducing GHG Emission: A Critical Analysis, Clean Technol. Environ. Policy, 13(2): 269–294 (2011).
[46] Jou F.Y., Mather A.E., Otto F.D., The Solubility of CO2 in a 30 Mass Percent Monoethanolamine Solution, Can. J. Chem. Eng., 73(1): 140–147 (1995).